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This work investigates hardware acceleration of object
tracking by parallelising an algorithm for object classifica-
tion involving decision trees. Object tracking is the process
of recognizing and locating a particular moving object in the
spatial as well as in the temporal domain of a video stream.
One key application of object tracking is video surveillance,
to provide an operator in a control room with novel tools for
assessing complex events among hundreds of live videos.
Object tracking can be achieved between two consecutive
video frames through template-based or feature-based cor-
relation of images. Although this approach is computation-
ally efficient, it can be unreliable or unsuccessful, because
the appearance of the object may drastically change or the
object may become occluded.

As an alternative, one can apply object classifiers in sub-
windows that vary in scale, size and position [1]. A classi-
fier describes an object based on a limited feature set. One
example of such a feature set are 2-bit Binary Patterns that
capture brightness variation in certain rectangular regions of
an object’s image. This feature set is mapped on an ensem-
ble of decision trees known as a random forest [2] that can
determine the probability of the object being present in a
search window. A single 2-bit Binary Pattern gives a very
weak indication that the sought object is present in the cur-
rent search window, while the mapping of several features
on one decision tree, and the combination of several trees,
can identify objects with high confidence.

A classifier can be trained by supervised learning tech-
niques: during the training phase the classifier is adapted by
manually selecting the object of interest in one video frame;
however, such human interaction is undesirable. Another
approach starts from a given instance of the object’s ap-
pearance [1]. Appearance changes are addressed through
P-N learning [3], an online learning technique that com-
bines a classifier learner with a Lucas-Kanade frame-by-
frame tracker [4] and a random-forest-based detector. P-N
learning identifies positive and negative instances of object
appearances in the video stream and uses these instances to
update the information captured by the decision trees.

Classifier-based object tracking is robust to drastic ap-
pearance changes and to total occlusions; however, it is com-

putationally demanding and it is hard and sometimes impos-
sible to achieve the required frame rates. We aim to alleviate
this problem by accelerating the exhaustive search for po-
tential object detections with reconfigurable hardware. Pro-
filing of a software algorithm reveals that 90% of the total
computation time is spent on the detector. We are there-
fore interested in developing a new custom hardware ar-
chitecture for this part of the algorithm in order to achieve
high frame-rates while lowering the power consumption at
the same time. We also aim to perform a fully exhaustive
search for object instances with pixel-by-pixel increments
over each video frame, which will increase the robustness
of the tracker.

The following describes the algorithm of our classifier-
based detector. The incoming video frames have 8-bit grey-
scale representation and standard VGA resolution. We store
incoming frames as integral images where each pixel value
is the cumulative sum of pixel values in the rectangular im-
age region to the left and above of the pixel. This image
representation makes the summation of the pixel values in a
rectangular region independent of the region’s size: the op-
erations are simple additions and subtractions of the pixel
values at the region’s corners. Binary Patterns are used for
capturing horizontal and vertical brightness variations in an
image region resulting in a 2-bit code. The 2-bit Binary Pat-
terns can be computed based on simple additions and sub-
tractions of a region’s corner pixels as described above. A
sub-window of a video frame is classified with a random for-
est consisting of ten decision trees, and each decision tree
is traversed based on ten 2-bit patterns. The leaf-nodes of
each tree specify the probability of an object match. Fig-
ure 1 illustrates this for three decision trees with three fea-
tures each. The probabilities from all trees are averaged to
yield a final probability; an unambiguous object identifica-
tion is determined after the exhaustive search by hysteresis
thresholding. This search is exhaustively repeated over the
entire image with various search window scaling factors.

We now present a novel hardware architecture that im-
plements the integral image conversion and classifier on an
FPGA in order to accelerate the most compute-intensive part
of the object tracking algorithm. The hardware architecture



 

Fig. 1. An example classification of a sub-window. Three
decision trees are used, each basing its decision on three fea-
ture locations. Probabilities at leaf nodes have been trained
in advance. In this example, the sub-window represents the
trained model with a probability of 80%.

is illustrated in figure 2. Here, we briefly introduce the de-
sign of classifier, since it is the bottleneck in the original
software implementation.

To accelerate the classification process, we exploit the
parallelism inherent in the random forest search: the ten
decision trees with the same sub-window input can be tra-
versed independently. We customise ten processing units
(PUs) on the FPGA, each working on one decision tree and
processing ten features associated with one tree in a pipeline.
Each PU has four adders, eight subtractors and two com-
parators to calculate the 2-bit Binary Patterns for each fea-
ture in four clock cycles.

As shown in figure 2, each PU has a dual-port local
on-chip memory storing all data elements of a sub-window.
Therefore, the sub-window size determines the on-chip mem-
ory utilization. In the current implementation, the sub-window
size is limited to 1024 elements that can be stored in one
36 Kbit block RAM (BRAM); if larger sub-window sizes
are desired then more on-chip memory is needed. This dis-
tributed memory system allows all PUs to work indepen-
dently. After the image is integrated in the integral mod-
ule, the corresponding elements of a sub-window are trans-
ferred into these local BRAMs. Since eight data elements
are needed to calculate the 2-bit Binary Pattern for one fea-
ture, four accesses to the dual-port local memory are re-
quired, completing in four clock cycles. This is well matched
with the four clock cycle arithmetic operations in the PU.
Thus, the memory access time is overlapped with computa-
tion time, reducing latencies. The hardware classifier out-
puts the tree traverse path, i.e. ten 2-bit patterns. These
patterns are transferred back to the CPU to resolve the cor-
responding P-N values. The learning part of the algorithm
which updates P-N values based on changing object appear-
ances is also implemented on the CPU.
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Fig. 2. Hardware architecture for object detection.

The resource utilization of one PU in the current imple-
mentation on a Xilinx Virtex-5 FPGA is one 36 Kbit BRAM
and 2600 slices. Initial performance results show that with a
clock rate of 125 MHz, the classification of one sub-window
can be performed in 0.62 µs. This corresponds to a frame
rate of 5 fps (frames per second) when performing a fully ex-
haustive search over VGA-resolution images. For compari-
son, our software implementation of the classifier on an In-
tel Xeon 2.4 GHz PC achieves a frame-rate of less than 1 fps
when performing the same exhaustive search, which is over
5 times slower than the FPGA version. The performance
can be further increased by processing several sub-windows
simultaneously. This can be achieved by implementing mul-
tiple classifiers in parallel as illustrated in figure 2.

Two target architectures for our hardware architecture
are a high performance compute node at Imperial College
with an AMD Phenom quad-core CPU and Virtex-5 LX330T
FPGA, and a Sony XCI-V100C Smart Camera with a VIA
Eden processor and a Virtex-5 SX50T FPGA. On the Virtex-
5 LX330T, 20 classifiers can be implemented in parallel and
on the Virtex-5 SX50T, 3 classifiers can be implemented.
This corresponds respectively to 100 times and 15 times
speed-up over the original software implementation. The
speed-up can be used for faster frame rates or processing
higher resolutions video streams. Current power estimates
for the Sony Smart Camera indicate that the computation
can be performed with less than 20 W. This is significantly
more efficient than the original PC implementation which
consumes 112 W during processing.
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