
TLM: Tracking-Learning-Matching of Keypoints

Georg Nebehay Roman Pflugfelder
AIT Austrian Institute of Technology

Safety and Security Department
Donau-City-Straße 1
1220 Vienna, Austria

{georg.nebehay.fl, roman.pflugfelder}@ait.ac.at

Abstract—In this work, we present an approach for improving
the long-term association of keypoints in videos by exploiting
the unlabeled parts of the video on-the-fly. Towards this end,
we track keypoints from frame to frame by using a method
for estimating optic flow. As long as this method is successful
(according to certain criteria), we update an ensemble classifier
with training data stemming from newly discovered views of the
keypoint as well as from false matches. In each frame, we match
candidate keypoints to the original keypoint by classifying them
and re-initialise the tracking mechanism after failure. Neither
a-priori knowledge about the keypoint nor a training stage is
required. Our method avoids the use of an expensive sliding-
window approach used by a similar method and instead embraces
a highly efficient keypoint detection and matching stage, making
our method suitable for the use in embedded devices. We show
experimentally that our approach is able to provide both accurate
and robust results on several sequences.

I. INTRODUCTION

Local features are a fundamental building block for many
applications in image and video processing. They are simple
and intuitive to use as they can be interpreted as corresponding
to interesting parts of objects [24]. While there are various
different types of local features, in this work we focus on the
robust matching of keypoints, arguably the simplest type of
a local feature. They have been used in a variety of fields,
such as object recognition and tracking, image retrieval and
3D-reconstruction [23].

There are two fundamentally different types of how corre-
sponding keypoints in videos can be identified [23]:
(a) Keypoints in a video frame are matched to keypoints in
a static database, typically by computing a distance between
their descriptors. Seminal work in this field was done by
Lowe [11]. This type of matching is robust, as every match
is performed independently of the matching result in previous
frames. This allows for instance to deal with occlusions of key-
points. However, the matching process becomes more difficult
when elements of the scene change, for instance global or local
illumination, camera position, or changes in the appearance of
the keypoint itself.
(b) Keypoints are tracked from one video frame to the next,
for instance by estimating its translation according to the optic
flow. Since tracking is typically done by employing a local
search, it allows for a greater degree of adaptivity, leading to
more accurate results. These methods fail when the keypoint
of interest disappears from the scene, for instance by an
occlusion. Another problem is that these methods suffer from
the danger of drift, which refers to the situation when a method
loses track of its original target and adapts to a different target.

Fig. 1: The main idea of our algorithm. In the top left image,
Both the robust matcher (yellow) and the adaptive tracker
(blue) agree on the location of the keypoint. The combined
result is shown in green. Subsequently, the tracker discovers
new views of the keypoint that are used for updating the
matcher, until in the top right image, an occlusion of the
keypoint occurs, leading to the failure of both methods. In the
bottom left image, only the matcher has a result, which is used
to re-intialise the tracker. In the bottom right image, the system
is able to discover a false match (red), and incorporates it into
the matching process. The underlying sequence is from [13].

In this work, we propose a novel way of combining a
method for tracking keypoints between consecutive frames
and a robust matching mechanism for keypoints. Keypoint
matching is improved in each frame in a learning framework.
We build on ideas from the recently proposed method for
object tracking Tracking-Learning-Detection (TLD [8]). Fig. 1
illustrates the basic idea of our approach. When developing
this algorithm, we explicitly envisioned its application on
embedded devices such as smart cameras that have to cope
with limited resources with respect to computational power.

The contributions of this work are threefold: (1) the ap-
plication of the TLD principle to the problem of keypoint
matching, (2) the replacement of the expensive sliding-window
stage for detection in TLD by a highly efficient keypoint detec-
tion, description and matching stage, and (3) an experimental
evaluation of this approach. This work is structured as follows.
In Section II we discuss related work. Section III contains a
detailed description of our proposed method. In Section IV we
show experimental results. Section V concludes this work.

II. RELATED WORK

There exists a substantial amount of work in the area
of machine learning concerned with the question of how
to improve supervised classification methods by additional
unlabeled data, a discipline known as semi-supervised learn-
ing [2]. The key idea here is that the intrinsic structure of
the data is exploited to automatically infer a labeling , which
is then used to refine the prediction of a classifier. We will
now briefly describe selected methods that make use either
of domain-agnostic semi-supervised learning methods or of
domain-specific knowledge in order to extract labels from
videos with the aim of improving performance.

There is some work on the improvement of keypoint
matching by using unlabeled data. Meltzer et al. [14] track
keypoints in a training phase where small displacements are
assumed using the method of Lucas and Kanade [12] and learn
the variations in keypoint appearances using kernel principal
component analysis. Building on the work of [10], Özuysal
et al. [17] “harvest” features in a training stage, where the
object of interest is assumed to move slowly. A classifier is
trained that is used to establish correspondences of keypoints
that appear later in the training phase. These corresponding
keypoints are then used to update the classifier. Grabner et
al. [5] present an approach that does not rely on a training
stage. Instead, they match keypoints by an online boosting
approach and estimate a homography based on the successful
matches. This homography is used in order to infer a labeling
of the keypoints and to update the boosting mechanism.

Unlabeled data has also been used in the context of object
tracking. In [3], online boosting is used in order to predict
the location of an object. New training data is acquired by
performing self-learning, meaning that the prediction itself is
used to perform an update of the boosting mechanism. This
type of acquiring new labels is known to suffer from the
problem of error accumulation. The approach was extended
in order to circumvent this problem in [4], where only the
first appearance of the object leads to an update and only the
classification is improved using unlabeled data. If the prior on
the first appearance is too strong, all the other appearances of
the object are considered too different and hence will not be
found. If the prior is too weak, then clutter in the background
will easily be interpreted as the object. In [22] this problem is
partially overcome by an adaptive prior.

Recently, Kalal et al. [8] proposed a method called
Tracking-Learning-Detection, where a frame-to-frame tracker
based on the estimation of optic flow is used to estimate the
position of the object in the next frame. This position is used
to update the detector in order to account for the new view of
the object as well as for false positives. The detector in turn
is used to re-initialise the frame-to-frame tracker after failure.
This mechanism was shown to be self-stabilising. Our method
differs from TLD in the following aspects. First, TLD deals
with the problem of object tracking, while we focus on the re-
association of keypoints, a problem that is not necessarily tied
to the application of object tracking. Second, in TLD a sliding-
window based classifier is used in order to perform a search for
an object. By replacing this computationally expensive global
search of TLD by a keypoint detection and matching stage, we
are able to embrace existing methods that are able to efficiently
identify interesting image regions.

III. PROPOSED METHOD

In this section we give a detailed description of our
proposed method. First, we track the keypoint of interest
from the previous frame to the current frame (Sec. (III-A).
Then we detect a set of keypoints (Sec. III-B) and compute
a descriptor for each keypoint (Sec. III-C). We then proceed
with the matching of these descriptors (Sec. III-D). Based
on the results of the tracker and the matcher we compute a
fused result (Sec. III-E) and use it to perform an update of the
matcher (Sec. III-F).

A. Frame-to-Frame Tracking

The aim of the frame-to-frame tracker is to provide an
estimate ot of the position of the keypoint of interest, where
the subscript t refers to the current frame. To this end, we
compute the optic flow from the video frames It−1 to It in
the point pt−1, which refers to the position of the keypoint
in the previous frame. For computing optic flow, we employ a
pyramidal implementation of the well-known method of Lucas
and Kanade [12], here denoted by LK.

It is desirable to detect errors of the frame-to-frame tracker,
as wrong results might lead to an incorrect update of the
classifier used for matching. In order to increase the robustness
of the LK-method, we compute optic flow bidirectionally, a
technique used by many authors, e.g. [7]. The idea here is that
the estimation of the optic flow is considered not to be reliable
if the estimation is not reversible. To this end, we employ
the method of Lucas and Kanade in forward and backward
direction

ot = LK(It−1, It, pt−1) (1)
o′t−1 = LK(It, It−1, ot) (2)

and compute a forward-backward error measure FB as in [7]
using the Euclidean distance

FB = ‖pt−1 − o′t−1‖. (3)

We discard the result of the frame-to-frame tracker when at
least one of the following conditions is true: a) LK fails to
compute the optic flow, b) pt−1 is undefined, c) FB is larger
than 20 pixels, d) ot is outside the image boundaries.

B. Keypoint Detection

The detection of keypoints typically is a very early pro-
cessing step. Often keypoints are used simply as building
blocks in computer vision applications, without attaching any
semantic meaning to them. A variety of keypoint detectors
exists, differing with respect to various quality measures and
computational demands. For an exhaustive survey, see [24].
While in principle any keypoint detector can be used in our
method, For our experiments we chose to use the FAST
keypoint detector by Rosten et al. [19] for its very low
computational demands and its state-of-the-art performance.

The idea of the FAST detector is depicted in Fig. 2. A circle
of sixteen pixels is considered around the corner candidate. If
there exists a set of 10 contiguous pixels in the circle which
are all brighter than the candidate pixel I(p) plus a threshold,
or all darker than I(p) minus a threshold, then the candidate
is added to the list of corners. Rosten devised a mechanism

p

16 1 2

3

4

5

6

7

9 810

11

12

13

14

15

Fig. 2: The FAST corner detection algorithm responds to can-
didate pixels p if a set of continuous pixels in a circle around
p are either brighter or darker than p. Image is from [19].

that evaluates those pixels first that are most likely to result
in an information gain. This way, many candidates can be
rejected very quickly. Additionally, non-maximal suppression
is performed in order to filter out corners that closely lie
together. We use a threshold value of 10 for our experiments.

C. Keypoint Description

As wide as the choice of keypoint detectors is the choice
of their descriptors. Much work has been done on evaluating
the performance of local descriptors (e.g. [15]). SIFT-based
descriptors typically rank among the top of these performance
evaluations. However, we are interested not only in good
matching performance, but also in an efficient implementa-
tions. For our experiments, we use the BRIEF descriptor [1]
which we will now describe.

The BRIEF descriptor on a keypoint k is based on n tests
of the form

τ =

{
1 if I(p1) > I(p2)

0 otherwise
(4)

The locations p1 and p2 are relative coordinates and are
chosen randomly before the start of the application. The
concatenation of all the binary values then yields the descriptor
x. We currently use 256 tests. Following [1], in order to
achieve robustness against noise, the image is smoothed using
a box filter prior to feature computation, which is a simple
approximation to the Gaussian filter. We employ an efficient
implementation based on integral images [21].

A natural and very efficient way of computing the distance
between two BRIEF descriptors xa and xb is to employ the
Hamming distance

dHAMM (xa, xb) =

n∑
i=1

XOR(xai , xbi) (5)

which for binary descriptors is equal to the L1-norm.

D. Keypoint Matching

The aim of the keypoint matching stage is to perform an
association between positive examples of the keypoint of inter-
est and candidate keypoints found in the image. Additionally,
negative examples from other keypoints can be used in order to
improve the association. While in principle a nearest neighbour

h1(y = 1 | F1) h2(y = 1 | F2) hm(y = 1 | Fm)

conf

Fig. 3: BRIEF descriptor and random fern classification of
a keypoint. The descriptor is split into vectors F1 . . . Fm of
equal size. Each vector is then converted to a decimal number
and used as an index for looking up the posterior probability.
A classification result is obtained by averaging all posterior
probabilities and performing a thresholding.

search could be used, it has been shown that by employing ma-
chine learning techniques, highly efficient keypoint matching
can be performed [16]. We formulate the matching of a single
keypoint as a binary classification problem with classes y = 1
(positive class) and y = −1 (negative class) and turn to the
technique proposed in [16] known as random fern classification
for solving it. For an illustration, see Fig. 3. The key idea is to
partition the feature vector x into m subvectors of equal size
s, here denoted by F1 . . . Fm.

x =

F1︷ ︸︸ ︷
x1 . . . xs,

F2︷ ︸︸ ︷
xs+1 . . . x2s, . . . ,

Fm︷ ︸︸ ︷
x(m−1)s+1 . . . xms . (6)

Instead of classifying the feature vector x as a whole, m
classifiers are used, where the classifier hk operates on the
subvector Fk. We follow [8] in the modelling of the classifi-
cation decision function hk(y = 1|Fk) of each classifier as

hk(y = 1|Fk) =
pFk

pFk
+ max(nFk

, 1)
. (7)

The term pFk
refers to the number of times that the feature

vector Fk was used as a positive training example and vice
versa for nFk

. If no training examples have been seen yet
for a subvector Fk, then we assume that it belongs to the
negative class, as the distributions of the classes are highly
imbalanced towards the negative class. This idea is reflected
in Eq. 7 by the term max(nFk

, 1). Since Fk can be interpreted
as a binary digit, it can serve as the index to an array where
the hk(y = 1|Fk) are stored, making this calculation extremely
efficient.

We combine the individual responses by

conf =
1

m

m∑
i=1

hi(y = 1|Fi), (8)

ŷ = sgn (conf − θ) , (9)

which essentially is an estimate of the label of the descriptor.
In every frame, we estimate the label of all keypoints in It.
Note that it is possible for multiple keypoints to be classified as
positive, a situation that will be dealt with in the next section.
The threshold θ can be increased in order to allow for a more
conservative matching. For our experiments we set it to 0.8.
We also set the fern size s to 8 and the number of ferns m to
32.

E. Fusion

We use the following heuristic for fusing the results of
the tracking and matching stage into the final result pt. If
exactly one candidate keypoint was matched to the positive
class, we set pt to the location of this keypoint. if this is not
the case, meaning that either multiple keypoints or no keypoint
at all were matched positively, we set pt to the outcome of
the tracker, which, depending on the tracking process may or
may not be defined. In short, we always give preference to the
detector, as long as it produces a single result. We argue that
the risk of making a wrong decision when selecting a positively
labeled keypoint is lower than when a sliding window is
selected out of tens of thousands of candidate windows, as
the number of keypoints typically is much lower.

F. Learning

The aim of a matching algorithm is to find as many correct
matches as possible, while avoiding both wrong matches and
missed matches. In order to achieve this aim, we update the
classifier whenever we can identify an error. Due to its adaptive
nature, the tracker will track keypoints successfully even if
their appearance changes slightly. If the matching algorithm
already identifies this new view as a correct match, we do not
perform an update. If however, the new view of the keypoint is
matched to the background class, we have successfully identi-
fied a missed match and use the corresponding descriptor as a
positive training example, meaning that we increment pFk

for
all individual classifiers in Eq. 7. We identify wrong matches
the following way. When pt is defined by the tracking result
and the matcher identified more than keypoint to be a match,
we use the descriptors of these keypoints as negative training
examples and increment the correspoding nFk

. Intuitively, this
means that the matcher has given a contradictory result, since
we assume that the keypoint exists only once. A wrong match
might lie close to pt, which happens as nearby keypoints
sometimes share similar descriptors. We therefore do not use
wrong matches as training examples that are closer than 20
pixels to pt.

An important aspect that has to be considered when
employing an adaptive method such as Lucas-Kanade is the
danger of drift. Even though we presented some constraints in
Sec. III-A that allow us to detect inconsistencies in the frame-
to-frame tracker, it still can happen that the tracker wanders off,
for instance in the case of slow occlusions. A certain degree of
adaptivity is desirable in order for the learning mechanism to
have an effect, but the question is when the border is crossed
from tracking a novel view of a keypoint to tracking a wrong
keypoint. In the context of object tracking, both Kalal et al. [8]
and Santner [20] argue that maintaining static examples eases

this problem to some extent, as these examples are never
altered during the update process and thus can be used to
achieve more stable results.

We follow this argumentation and use the descriptor of the
initial keypoint x0 as a single static template. In every learning
step we compute the distance of the current keypoint descriptor
to the initial descriptor

δt = dHAMM (x0, BRIEF (pt)) (10)

and perform an update of the classifier only if δt is smaller
than a threshold

δt < θstatic. (11)

The threshold θstatic affects the adaptivity of the system.
When θstatic is low, then only a small amount of new views
of the keypoint of interest will be discovered. When θstatic
is maximal, then all the discovered views will be used for
updating. Currently, we use θstatic = 30.

IV. EXPERIMENTAL RESULTS

A. Qualitative results

For evaluation purposes, we employed 5 sequences from
the literature: car [25], david indoor [18], ball [9], dudek [6]
and lemming [20]. Qualitative results for representative key-
points on these sequences are shown in Fig. 4. These results
demonstrate the ability of our system to robustly perform
keypoint assocation over the course of long sequences and
various kinds of changes in appearance. The last column of
each row confirms the necessity of incorporating false positives
into the matching process. Even for humans, the last picture
of the fourth row is highly ambiguous.

B. Keypoint Evolution and System Reaction

In this experiment, we provide evidence that the descriptor
of a keypoint evolves over time and show how our system
reacts to these changes. To this end, we initialised our system
with the keypoint shown in the first image of the top row of
Fig. 4, corresponding to a corner of a vehicle. It is obvious to
a human beholder that the view on the keypoint changes over
time (see the other images of the same row). We visualise this
change by plotting the distance δ between the descriptor of
the current location estimate and the initial descriptor (Eq. 10)
in each frame of the sequence car in Fig. 5. Starting from
the first frame, δ increases even if the keypoint is matched
correctly. The amplitudes correspond to situtations when the
tracker drifts away from the keypoint. A sudden drop in dt
typically corresponds to a re-initialisation by the matcher.

C. Matching Comparison

In this experiment, we perform a comparison of the match-
ing performance between our proposed method and a standard
method of matching BRIEF descriptors. For the standard
method, we compute BRIEF descriptors on all FAST keypoints
in the current image. We then perform matching by finding the
keypoint that exhibits minimal distance to the initial keypoint.

Fig. 4: Qualitative results on sequences from the literature.
The initial selection of the keypoint of interest is shown in the
first image of each row. The middle images in each row depict
correct matching results, while the last column shows a false
positive that was discovered. From top to bottom: car, david
indoor, ball, dudek, lemming.

0 200 400 600 800

0

50

100

150

Frame

δ
t

Fig. 5: Hamming distance δt between the descriptor at position
pt and the initial descriptor on the car sequence. It can be seen
that the distance to the initial descriptor becomes considerably
larger in later frames. Amplitudes typically correspond to
errors of the frame-to-frame tracker.

For computing the matching performance we follow the work
of Mikolajczyk and Schmid [15] and measure

Recall =
#correct

#keypoint
(12)

and
Precision =

#correct

#correct+#incorrect
(13)

The term #visible refers to the number of frames where
the keypoint is visible. In precision-recall curves matching
performance is plotted as the threshold of the matcher is varied

0 1
0

1

Recall

Pr
ec

is
io

n

door

Proposed method
BRIEF matching

0 1
0

1

Recall

Pr
ec

is
io

n

nose

Proposed method
BRIEF matching

Fig. 6: Precision-recall curves on two keypoints. Our proposed
approach clearly outperforms the standard method regardless
of which thresholds are used.

from its minimum value to its maximum value. When the
threshold is at its minimum value, all matching results are kept,
resulting in maximum recall. When the threshold is increased,
both the number of correct and incorrect matches decrease,
which leads to a decrease of recall and to an increase in
precision. For our method, we threshold the confidence values
computed in Eq. 8. For the standard BRIEF matching, we
employ the threshold on the distance between the descriptor of
the matched keypoint and the descriptor of the initial keypoint.

In order to compute precision and recall, we manually
annotated two keypoints in two different sequences, a stable
one corresponding to the upper left corner of a door and a
dynamic one, corresponding to a nose.

door nose

The door keypoint does not change its appearance, but it
gets occluded multiple times. The nose keypoint undergoes
a variety of changes, as it can be seen in the fourth row of
Fig. 4. In order to compute #correct and #incorrect, we
measure the Euclidean distance between the matched keypoint
and the annotated keypoint. If the distance does not exceed
a certain threshold, we increment #correct. If the distance
exceeds the threshold, or if the matching algorithm gives a
result, even though the keypoint is not visible in the image,
we increment #incorrect. We currently use 10 pixels as the
distance threshold. In Fig. 6 the precision-recall curves are
shown. For both keypoints, our method clearly is superior to
the standard BRIEF matching algorithm.

D. Execution Time

In order to assess the computational demands of our
proposed method, we measured wall clock time for each of the
operations described in Sec. III on a smart camera equipped
with an Intel Atom N270 CPU. In Tab. I the timings are shown
for the two most expensive stages (keypoint detection and

Sequence Resolution Detection Description Total

Ball 320× 240 0.015 0.029 0.062
Car 320× 240 0.011 0.014 0.057

David 320× 240 0.013 0.050 0.100
Dudek 720× 480 0.042 0.196 0.392

Lemming 640× 480 0.051 0.386 0.599

TABLE I: Timings in seconds.

description) as well as for the total execution time. While the
time for detecting keypoints depends mainly on the resolution
of the input images, the description stage depends on the
number of keypoints found in an image. This explains why
processing time for the Lemming sequence is higher than
that of the Dudek sequence, even though the resolution of
the Lemming sequence is lower. The Lemming sequence
consists of many different objects, thus yielding a high number
of keypoints, while the background in the Dudek sequence
is homogenous. This means that it is reasonable to adjust
the sensitivity of the keypoint detector in order to reduce
computational demands. For scenes with little texture, such as
the Ball and Car sequences, real-time processing is reachable.

V. CONCLUSIONS

Our experimental results have shown that the TLD princi-
ple is well suited for the robust matching of single keypoints
and is able to cope with a variety of appearance changes. We
also have shown how to avoid the expensive sliding-window
approach of TLD by employing already existing methods for
keypoint detection and matching. The most compelling open
task is to extend this method to the simultaneous association
of multiple keypoints, which we will address in future work. It
also might be interesting to incorporate the keypoint detector
into the learning process, as the sensitivity of the feature
detector obviously plays an important role in avoiding wrong
decisions. At present, an unsolved problem is how to perform
an extensive performance evaluation, as to the best of our
knowledge no ground truth for long-term keypoint matching in
videos exist. To overcome this problem, the creation of a data
set of annotated keypoints in various sequences is desirable.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Union Seventh Framework Programme
under grant agreement no 257906.

REFERENCES

[1] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and
P. Fua, “BRIEF: Computing a local binary descriptor very fast,” Pattern
Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1281–1298, Jul.
2012.

[2] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learn-
ing. The MIT Press, Sep. 2006.

[3] H. Grabner and H. Bischof, “On-line boosting and vision,” in Computer
Vision and Pattern Recognition, vol. 1, Jun. 2006.

[4] H. Grabner, C. Leistner, and H. Bischof, “Semi-supervised On-Line
boosting for robust tracking,” in European Conference on Computer
Vision, 2008.

[5] M. Grabner, H. Grabner, and H. Bischof, “Learning features for
tracking,” in Computer Vision and Pattern Recognition. IEEE, Jun.
2007, pp. 1–8.

[6] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi, “Robust online
appearance models for visual tracking,” Pattern Analysis and Machine
Intelligence, vol. 25, no. 10, pp. 1296–1311, Oct. 2003.

[7] Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward-Backward Error:
Automatic Detection of Tracking Failures,” in International Conference
on Pattern Recognition, 2010, pp. 23–26.

[8] ——, “Tracking-Learning-detection,” Pattern Analysis and Machine
Intelligence, vol. 34, no. 7, pp. 1409–1422, Jul. 2012.

[9] D. A. Klein, D. Schulz, S. Frintrop, and A. B. Cremers, “Adaptive real-
time video-tracking for arbitrary objects,” in International Conference
on Intelligent Robots and Systems. IEEE, Oct. 2010, pp. 772–777.

[10] V. Lepetit, P. Lagger, and P. Fua, “Randomized trees for Real-Time
keypoint recognition,” in Computer Vision and Pattern Recognition,
vol. 2. Los Alamitos, CA, USA: IEEE, 2005, pp. 775–781.

[11] D. G. Lowe, “Distinctive image features from Scale-Invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, Nov. 2004.

[12] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proceedings of the International
Joint Conference on Artificial Intelligence, 1981, pp. 674–679.

[13] E. Maggio and A. Cavallaro, “Hybrid particle filter and mean shift
tracker with adaptive transition model,” in International Conference on
Acoustics, Speech, and Signal Processing, 2005, pp. 221–224.

[14] J. Meltzer, M.-H. Yang, R. Gupta, and S. Soatto, “Multiple view feature
descriptors from image sequences via kernel principal component
analysis,” in European Conference on Computer Vision, 2004, pp. 215–
227.

[15] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” Pattern Analysis and Machine Intelligence, vol. 27, no. 10,
pp. 1615–1630, 2005.

[16] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint recog-
nition using random ferns,” Pattern Analysis and Machine Intelligence,
vol. 32, no. 3, pp. 448–461, 2010.

[17] M. Özuysal, V. Lepetit, F. Fleuret, and P. Fua, “Feature harvesting for
Tracking-by-Detection,” in European Conference on Computer Vision.
Springer, 2006, pp. 592–605.

[18] D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning
for robust visual tracking,” International Journal of Computer Vision,
vol. 77, no. 1, pp. 125–141, May 2008.

[19] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A machine
learning approach to corner detection,” Pattern Analysis and Machine
Intelligence, vol. 32, no. 1, pp. 105–119, Jan. 2010.

[20] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof, “PROST:
Parallel robust online simple tracking,” in Computer Vision and Pattern
Recognition, 2010.

[21] P. Y. Simard, L. Bottou, P. Haffner, and Y. LeCun, “Boxlets: a fast
convolution algorithm for signal processing and neural networks,” in
Conference on Advances in Neural Information Processing systems.
Cambridge, MA, USA: MIT Press, 1999, pp. 571–577.

[22] S. Stalder, H. Grabner, and L. van Gool, “Beyond semi-supervised
tracking: Tracking should be as simple as detection, but not simpler
than recognition,” in International Conference on Computer Vision
Workshops. IEEE, 2009, pp. 1409–1416.

[23] R. Szeliski, Computer Vision: Algorithms and Applications. Springer,
2010.

[24] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature detectors:
a survey,” Foundations and Trends in Computer Graphics and Vision,
vol. 3, pp. 177–280, Jul. 2008.

[25] Q. Yu, T. B. Dinh, and G. Medioni, “Online tracking and reacquisition
using co-trained generative and discriminative trackers,” in European
Conference on Computer Vision, 2008.

