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Abstract. We present a novel analysis of the state of the art in object tracking
with respect to diversity found in its main component, an ensemble classifier that
is updated in an online manner. We employ established measures for diversity and
performance from the rich literature on ensemble classification and online learn-
ing, and present a detailed evaluation of diversity and performance on benchmark
sequences in order to gain an insight into how the tracking performance can be
improved.

1 Introduction

We deal with the problem of single-target model-free object tracking in videos, mean-
ing that a single object is to be tracked and no a priori information about the object
is available. Many authors (e.g. [14, 17, 24, 25]) formulate the task of object tracking
as a binary classification problem, and use ensembles of multiple learners as binary
classifiers. One of the elements required for accurate prediction in ensembles is error
diversity [6]. While measures for diversity have been considered explicitly in the con-
text of object tracking before [26], in this work, we take a different path and analyse
the diversity in the state of the art object tracking method TLD (Tracking-Learning-
Detection [17]) in order to gain an insight into how its performance can be improved by
manipulating diversity.

As TLD consists of multiple interleaved components, we focus our analysis on
its most influential component, a random fern classifier [23]. While it is not clear yet
whether our findings generalize to the original TLD method, or to other object track-
ing methods, we do establish a baseline with the analysis of the random fern classifier,
against which more involved methods can be evaluated in future. The contributions of
this paper are threefold: firstly, we show how diversity can be measured in TLD. Sec-
ondly, we provide a detailed analysis with respect to diversity and performance. Thirdly,
we hint at ways how performance might be improved.

This work is structured as follows. In section 2 we discuss related work in object
tracking and machine learning. In section 3 we describe the state of the art tracking
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method TLD. In section 4, we lay out our experimental setup. In section 5 we present
our analysis of diversity and performance, and section 6 gives conclusions and final
remarks.

2 Related Work

In this section, we first review related work in online learning for object tracking, and
secondly describe existing techniques for the engineering of diversity in ensembles of
learners.

2.1 Online Learning in Object Trackers

Collins et al. [8] were the first to employ binary classification in a tracking context,
the two classes being the object and the immediate surrounding. They employ feature
selection in order to switch to the most discriminative colour space from a set of candi-
dates and use mean-shift for finding the mode of a likelihood surface, thereby locating
the object. In a similar spirit, Grabner et al. [14] perform online boosting and Babenko
et al. [1] use multiple instance learning in order to find the location of the object. All
of these methods use a form of reinforcement learning, meaning that the prediction of
the classifier is directly used to update the classifier. While this approach enables the
use of unlabelled data for training, it typically amplifies errors made in the prediction
phase, thus leading to a degradation of tracking performance. In [15], this problem is
addressed by casting object tracking as a semi-supervised learning problem, where only
the first appearance of the object is used for updating. Both Kalal et al. [17] and Sant-
ner et al. [25] employ an optic-flow-based mechanism for labelling the available data
in order to reduce the errors made in the prediction phase and demonstrate superior
results.

2.2 Diversity of Ensembles in Object Tracking

In machine learning generally, diverse ensembles of classifiers often provide better pre-
diction accuracy than any of the individual members of the ensemble [6]. Visentini et
al. [26] employ a combined measure of diversity and performance to select classifiers
from a pool for adaptive object tracking. Additionally, diversity has been considered
more generally in computer vision. Bertolami and Bunke [2] use diversity measures
as indicators for the accuracy of ensemble classification for handwriting recognition.
Frinken et al. [13] increase the diversity of a handwriting recognition system by combin-
ing Neural Networks, Maximum Margin Hidden Markov Models and Hidden Markov
Models, and show that high diversity leads to better results. Levy et al. [19] force classi-
fiers to learn different aspects of the data by minimizing correlation between ensemble
members and show improved results on visual recognition problems.

2.3 Engineering Diversity in Online Learning

The literature is abound with methods for encouraging diversity in ensembles. Attempts
at consolidating these methods into taxonomies have also been made [6, 9], which can
provide guidelines for encouraging diversity in different ways.



The taxonomy by Dietterich [9] consolidates ensemble creation methods into var-
ious categories with diversity encouragement being at the heart. For the discussion in
this section, we assume a standard supervised learning problem: a learning algorithm
is presented with a training set S {(x1,y1) . . .(xN ,yN)} of size N for learning some
unknown function y = f (x). The learning algorithm outputs a classifier, which is a hy-
pothesis hi ∈ H about the true underlying function f . The various methods found in
such taxonomies have been applied mostly in the offline learning mode. They can how-
ever be adapted to the online case (e.g. [21,22]), where training instances continuously
arrive one at a time as a stream of data. A brief overview of the taxonomy now follows:

Bayesian voting. In problems where it is possible to enumerate each hypothesis hi ∈
H, and calculate a prior P(h), the problem of classifying a new example x amounts
to computing P( f (x) = y|S,x) = ∑h∈H h(x)P(h|S). This can be viewed as an en-
semble consisting of all possible hypotheses in H, where each hypothesis h is
weighted by its posterior probability P(h|S). However, Bayesian voting fails where
it is not possible to enumerate all possible hypotheses and calculate the prior P(h).

Manipulating training examples. L iterations of the learning algorithm are run. In
each iteration a different subset of the training set S is used to train the classi-
fier hi, i = 1 . . .L, thus generating multiple classifiers, each trained on a different
training set. Example algorithms in this category are Bagging [3], Cross validated
committees, and AdaBoost [12].

Manipulating input features. The input features are divided into feature subsets, and
in each iteration i of the learning algorithm, a classifier is trained on a subset(s) of
the input features. The random subspace method [16] falls into this category.

Injecting randomness. Some randomness can be induced into the learning setup, for
example in a neural network ensemble by using different initial weights, or inject-
ing noise into the input features following bootstrap sampling.

Manipulating output targets. The error-correcting output code technique [10] manip-
ulates the y labels of the training examples in classification problems where the
number of classes, k, is large. Instead of learning the problem on the original k
classes, in each iteration i = 1 . . .L, the k classes are divided into two subsetsA and
B (different in each iteration) and the input data re-labelled 0 and 1 respectively
for classes in subsets A and B. This results in L classifiers h1 . . .hL. To classify a
new data point x, if hi(x) = 0, then each class in subset A receives a vote and if
hi(x) = 1, then each class in subset B receives a vote. Once all L classifiers have
voted, the class with the largest prediction is selected as the ensemble output.

Manipulating error functions. Diversity can be explicitly encouraged and maintained
by defining and minimising a correlation term between ensemble members. Nega-
tive correlation encourages individual members to learn different parts of the train-
ing data (specialisation) allowing the ensemble to learn the entire training data bet-
ter than any single or monolithic member [20]. Ensemble members are trained si-
multaneously allowing the members to interact and cooperate through a correlation
penalty term that is introduced in the error function such that the individual error
of each member is negatively correlated to the rest of ensemble errors [7].



Diversity Metrics Several measures for a quantitative assessment of diversity in en-
sembles have been proposed in the literature. Kuncheva et al. [18] have conducted a
wide and detailed study of various diversity measures, and conclude that there is no
unique way of measuring diversity, and in general, there is no direct or distinctive rela-
tionship between the diversity of an ensemble and its accuracy. One of the most com-
monly used diversity measures, the Q-statistic [18] is calculated in a pairwise manner
for any two classifiers fi and f j:

Qi, j =
ad−bc
ad +bc

(1)

The symbols a,b,c,d refer to the number of times
a : fi and f j are correct,
b : fi is correct, f j is incorrect,
c : fi is incorrect, f j is correct,
d : fi and f j are incorrect.

Qi, j is closer to 1 if the output of the classifiers is not diverse, and is closer to−1 if their
output is diverse. An overall measure for the diversity of an ensemble of size n is then
obtained by averaging all of the pairwise measurements.

3 State of the Art in Object Tracking

3.1 Tracking-Learning-Detection

Kalal et al. [17] propose a solution to the tracking problem which they call Tracking-
Learning-Detection (TLD). TLD consists of two separate components: A frame-to-
frame tracker that predicts the location L j of the object in frame I j by calculating the
optical flow between frames I j−1 and I j and transforming L j−1 accordingly. Clearly,
this approach is only feasible as long as the object is visible in the scene and fails oth-
erwise. When the object is presumably tracked correctly (according to certain criteria)
the location L j is used in order to update a Random Fern classifier [23] with positive
training data from patches close to L j and negative data from patches that exceed a
distance. This classifier is then applied in a sliding-window manner (see figure 1) in
order to re-initialize the frame-to-frame-tracker after failure. Two additional stages not
described here are used for classification.

3.2 Random Fern Classifier

The Random Fern classifier [23] operates on binary features f1 . . . fn calculated on the
raw image data. These features are randomly partitioned into groups of so-called ferns
F1 . . .Fm of size s

F1︷ ︸︸ ︷
f1 . . . fs,

F2︷ ︸︸ ︷
fs+1 . . . f2s . . .

Fm︷ ︸︸ ︷
f(m−1)s+1 . . . fms . (2)

Ferns essentially are non-hierarchical trees, meaning that the outcome of each fern is
independent of the order in which features are evaluated. The main reason for favouring



Fig. 1: In TLD, a binary ensemble classifier is used to locate the object of interest by
applying it in a sliding-window manner. The ability for multi-scale detection is achieved
by scaling the size of the detection window. Image is from the SPEVI1dataset.

ferns over trees is that they can be implemented extremely efficiently, an important
property for real applications.

3.3 Features

In [23], a feature vector of size s consists of s binary tests performed on gray-scaled
image patches. Each test compares the brightness values of two random pixels (See
figure 2). The locations of the tests are generated once at startup and remain constant
throughout the rest of the processing. The same set of tests is used with appropriate
scaling for all subwindows. Input images are smoothed with a Gaussian kernel to reduce
the effect of noise.

3.4 Random Ferns in TLD

The posterior probability for each fern is

P(y = 1|Fk) =
P(y = 1)P(Fk|y = 1)

∑
1
i=0 P(y = i)P(Fk|y = i)

. (3)

1 http://www.eecs.qmul.ac.uk/~andrea/spevi.html
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1 1 0 1

Fig. 2: Feature values depends on the brightness values of pairs of two random pixels.
In this case, the outcome is the binary string 1101.

In TLD, the prior is assumed to be uniform, and the P(Fk|y = i) are modelled as the
absolute number of occurrences #pFk for positive training data and #nFk for negative
training data. Therefore, the posterior probability becomes

P(y = 1|Fk) =
#pFk

#pFk +#nFk

. (4)

When #pFk = #nFk = 0, then P(y = 1|Fk) is assumed to be 0 as well. Each training
instance is used for training only if it was misclassified in the current frame. A decision
is obtained by employing a threshold θ on the posterior probabilities combined using
the mean rule

1
m

m

∑
i=1

P(y = 1|Fi)≥ θ . (5)

4 Experimental Setup

We conduct experiments according to the following novel pattern in order to assess the
diversity and the performance of the Random Fern classifier in TLD. For each frame,
we closely follow the predict-update cycle of classical online learning: first we let the
classifier predict labels for all subwindows. We then measure performance and diversity
using the ground truth values and update the classifier according to the misclassified
examples. Each experiment is run 10 times with different seeds for the random number
generator. Over these runs, the mean and standard deviation of the selected metrics for
performance and diversity are reported. We apply the following modifications to the
original algorithm [17].

– Majority voting is used instead of the mean rule. Crisp outputs are obtained by
applying the threshold θ on the posterior probabilities of the individual classifiers.

– We replace the optic-flow based tracker with manually labeled ground truth.
– We disregard the two classification stages besides the random fern classifier.



The first modification enables the use of the Q statistic. We perform the last two mod-
ifications since we are interested only in the performance limits of the classifier. The
analysis of this modified version gives us a baseline against which to evaluate more
involved methods in the future.

4.1 Performance Measures

We use the following statistics to measure the performance, based on the occurrences of
True Positives (TP), False Negatives (FN) and False Positives (FP) in each frame. TPs,
FNs and FPs are found by comparing algorithmic output to manually annotated ground
truth. Recall, given by

R j =
TP j

TP j +FN j
, (6)

measures the fraction of positive instances that were correctly classified as positive.
Precision, given by

Pj =
TP j

TP j +FP j
, (7)

measures the fraction of examples classified as positive that are truly positive. The F-
measure, given by

Fj =
2R jPj

R j +Pj
, (8)

as the harmonic mean, combines precision and recall into a single measurement. We
calculate R j,Pj and Fj for each frame and report their average values R,P,F over the
whole sequence.

As the employed set of subwindows is not exhaustive, there will typically be no sin-
gle subwindow of the same location and the same dimension as the manual annotation.
We therefore employ the measure used in the Pascal Visual Object Challenge [11] for
overlap between two bounding boxes B1 and B2, namely,

overlap =
B1∩B2

B1∪B2
=

I
(B1 +B2− I)

. (9)

If the overlap between a manual annotation and a subwindow is larger than 0.5, the
subwindow is labelled positive as well.

We employ the Q-statistic (section 2.3) as a measure for diversity in each frame and
report averaged values over the whole sequence. While other diversity measures are
available, we chose the Q-statistic as a starting point for our analysis primarily due to
its widespread use. However, we plan to investigate different measures of diversity in
future work.

4.2 Sequences

We employ the following six sequences for conducting our evaluation. These sequences
were used in [17,27] for evaluating object tracking methods. David (761 frames) shows
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Fig. 3: Both diversity and performance exhibit a convergent behaviour when the number
of ferns m is increased.

a person walking from an initially dark setting into a bright room and undergoing vari-
ous changes in appearance. Jumping (313 frames) shows a person jumping rope caus-
ing motion blur. Pedestrian 1 (140 frames), Pedestrian 2 (338 frames) and Pedestrian
3 (184 frames) show pedestrians being filmed by an unstable camera. Car (945 frames)
shows a moving car, exposed to low contrast recording and undergoing multiple occlu-
sions. The appearance of the car itself stays constant over the run of the sequence.

5 Diversity Analysis of TLD

In this section we present novel analyses of diversity within TLD based object tracking.
Firstly, we explore the effect of varying the parameters of the system on the selected
metrics. Secondly, we artificially increase diversity in the system and analyse the result-
ing effects. We use the parameters m = 30,s = 14,θ = 0.5 unless noted otherwise.

5.1 Effect of Parameters

The parameter m steers the number of classifiers in the ensemble. Breiman [4] proved
that an ensemble of randomized decision trees does not overfit as more trees are added,
meaning that performance does not decrease. However it is not clear how m affects
diversity. In figure 3 we plot Q and F against m for the sequence David. Increasing m
leads to a convergent behaviour of Q, similar to the performance metric. Q converges
more quickly than the performance metrics. These findings generalize to all sequences.

The parameter θ directly influences recall and precision. High values of θ lead to
an improvement of precision, as false positives are filtered out, and to a degradation of
recall. Low values of θ lead to the inverse effect. Intuitively, both high and low values



Sensitivity threshold θ

Sequence Metric 0.1 0.3 0.5 0.7 0.9

car Q 0.31±0.01 0.29±0.01 0.28±0.01 0.27±0.01 0.26±0.01
P 0.62±0.01 0.76±0.00 0.81±0.00 0.84±0.00 0.86±0.00
R 0.95±0.00 0.92±0.00 0.90±0.00 0.85±0.00 0.73±0.00

david Q 0.21±0.01 0.19±0.01 0.18±0.01 0.17±0.01 0.16±0.01
P 0.28±0.02 0.56±0.01 0.67±0.00 0.74±0.00 0.74±0.01
R 0.82±0.00 0.76±0.00 0.70±0.00 0.58±0.01 0.34±0.01

jumping Q 0.24±0.01 0.22±0.01 0.21±0.01 0.21±0.01 0.20±0.01
P 0.36±0.01 0.59±0.00 0.68±0.00 0.76±0.00 0.78±0.01
R 0.85±0.00 0.77±0.00 0.70±0.00 0.58±0.00 0.35±0.01

pedestrian1 Q 0.30±0.01 0.27±0.01 0.26±0.01 0.26±0.01 0.25±0.01
P 0.23±0.01 0.38±0.01 0.45±0.01 0.53±0.01 0.52±0.01
R 0.53±0.01 0.44±0.01 0.38±0.00 0.26±0.01 0.14±0.01

pedestrian2 Q 0.31±0.01 0.29±0.01 0.28±0.01 0.27±0.01 0.26±0.01
P 0.35±0.01 0.53±0.01 0.62±0.01 0.74±0.01 0.77±0.02
R 0.71±0.01 0.68±0.01 0.65±0.01 0.58±0.01 0.45±0.01

pedestrian3 Q 0.47±0.01 0.45±0.01 0.44±0.01 0.44±0.01 0.42±0.01
P 0.53±0.01 0.68±0.01 0.76±0.01 0.84±0.01 0.87±0.01
R 0.92±0.01 0.87±0.01 0.83±0.01 0.75±0.01 0.57±0.01

Table 1: Increasing θ leads to an increase of diversity due to many positive instances
being misclassified, thus increasing the size of the positive training set.

of θ should lead to a reduction of diversity, as the output of the individual classifiers
become more similar. In table 1, θ is varied for all sequences. Surprisingly, Q decreases
monotonically as θ is increased. The explanation for this effect is that high values of
theta lead to many positive instances being misclassified, and therefore the set of posi-
tive training data becomes larger, causing a reduction of Q.

5.2 Increasing Diversity

In order to artificially increase diversity in the ensemble classifier, we restrict the loca-
tion of the binary tests for individual classifiers to certain parts of the input image, thus
decreasing the amount of information shared between them. For each classifier we ran-
domly sample a value µ j. We then generate the binary tests from the two-dimensional
uniform distribution U(max(0,µ j−σ),min(1,µ j+σ)). Brown and Kuncheva [5] show
that the majority vote error can be decomposed into the sum of individual errors (ad-
ditive term), diversity measured on correctly classified instances called good diversity
(subtractive term) and diversity measured on misclassified instances called bad diver-
sity (additive term). While the decomposition of the F measure into analogous Q terms
is unknown, the notions of good and bad diversity are still helpful in our context. For
this experiment, we measure Q both on correctly classified instances (Qgood) and on
misclassified instances (Qbad).

When σ is decreased, we make the following observations for all sequences in ta-
ble 2: Q and Qgood decrease strongly. Qbad starts out closely above the theoretical min-



Feature locality 1−σ

Sequence Metric 0.1 0.3 0.5 0.7 0.9

car Q 0.28±0.01 0.23±0.01 0.16±0.01 0.10±0.00 0.08±0.00
Qgood 0.27±0.01 0.22±0.01 0.15±0.01 0.10±0.00 0.07±0.00
Qbad 0.01±0.00 0.00±0.00 0.00±0.00 -0.00±0.00 -0.01±0.00
F 0.86±0.00 0.86±0.00 0.86±0.00 0.85±0.00 0.77±0.01

david Q 0.19±0.01 0.17±0.01 0.13±0.01 0.11±0.00 0.11±0.00
Qgood 0.18±0.01 0.16±0.01 0.13±0.01 0.11±0.00 0.10±0.00
Qbad 0.00±0.00 0.00±0.00 -0.00±0.00 -0.00±0.00 0.00±0.00
F 0.69±0.00 0.69±0.00 0.69±0.01 0.67±0.01 0.51±0.01

jumping Q 0.22±0.01 0.20±0.02 0.16±0.02 0.09±0.01 0.07±0.00
Qgood 0.21±0.01 0.19±0.02 0.15±0.02 0.09±0.01 0.07±0.00
Qbad 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.00±0.00
F 0.70±0.00 0.70±0.01 0.69±0.01 0.66±0.01 0.44±0.02

pedestrian1 Q 0.26±0.01 0.25±0.01 0.21±0.01 0.15±0.01 0.08±0.00
Qgood 0.23±0.01 0.22±0.01 0.18±0.01 0.13±0.01 0.07±0.00
Qbad 0.04±0.00 0.04±0.00 0.03±0.00 0.03±0.00 0.02±0.00
F 0.41±0.01 0.41±0.01 0.41±0.02 0.40±0.02 0.34±0.02

pedestrian2 Q 0.27±0.01 0.26±0.01 0.21±0.01 0.14±0.01 0.08±0.00
Qgood 0.26±0.01 0.25±0.01 0.20±0.01 0.13±0.01 0.07±0.00
Qbad 0.04±0.00 0.03±0.00 0.03±0.00 0.02±0.00 0.01±0.00
F 0.66±0.01 0.67±0.01 0.66±0.01 0.62±0.03 0.49±0.04

pedestrian3 Q 0.45±0.01 0.44±0.02 0.38±0.02 0.22±0.01 0.09±0.01
Qgood 0.44±0.01 0.42±0.02 0.37±0.02 0.21±0.01 0.08±0.00
Qbad 0.04±0.00 0.04±0.00 0.03±0.00 0.03±0.00 0.02±0.00
F 0.81±0.01 0.81±0.01 0.80±0.01 0.77±0.01 0.71±0.02

Table 2: Diversity increases when the locations of the binary tests become more lo-
cal. Qbad indicates that diversity in the classification result of misclassified instances is
already very high from the start.

imum − 1
m , decreasing only slightly. Depending on the sequence, performance rapidly

decreases at a certain value of σ . Increasing diversity the way we have seems to increase
the error of the individual classifiers. For low values of σ , this increase is compensated
for by a decreased Qgood , leading to a stable F . For high values of σ , the errors of
the individual classifiers seem to outweigh the increased good diversity, leading to a
reduction of F .

These observations suggest that we need to find a way to encourage diversity that
keeps the individual classifiers from exhibiting an increased error. Since Qbad is close
to the theoretical minimum, increasing it can help us increase ensemble performance.
Devising a training scheme that is informed by the wrongly classified instances may
be one way of increasing Qbad . Further analysis of the relationship between Qgood ,
Qbad , and individual classifier performance, will shed more light on ways to encourage
diversity that may lead to an increased overall performance.



6 Conclusions and Future Work

In this work, we presented an analysis of the state of the art in object tracking with
respect to diversity and showed how it is influenced by the intrinsic parameters of its
ensemble classifier. We also showed how diversity can be increased artificially and con-
clude that performance is reduced due to an increased error of the individual classifiers.
We plan to look into methods that increase good diversity while keeping the individ-
ual accuracy stable. We also acknowledge the fact that reducing bad diversity will help
increase performance.

A better understanding of the relationship between performance of individual clas-
sifiers, as well as between good and bad diversity, will help show ways on how overall
performance can be increased. We also plan to explicitly reduce correlation in the sys-
tem by making use of algorithms similar to minimal correlation learning [19].

As only misclassified examples are used for training, the classifier highly overfits the
training data. This does not to lead to a reduction in performance as long as sequences
contain sufficient training examples. When short sequences with severe changes in ap-
pearance occur, performance is affected in a negative way. The results of Minku et
al. [21] suggest that an increased level of diversity could help in exactly these cases.
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