

VERSIONSNUMMER

R E P O R T

Evaluation of an online learning approach
for robust object tracking

Georg Nebehay

Branislav Micusik

Cristina Picus

Roman Pflugfelder

01.03.2011

AIT-DSS-0279

Evaluation of an online learning approach for
robust object tracking

G. Nebehay; B. Micusik, C. Picus, R. Pflugfelder
AIT Austrian Institute of Technology

{georg.nebehay.fl, branislav.micusik, cristina.picus, roman.pflugfelder}
@ait.ac.at

TR AIT-DSS-0279

Abstract

Current state-of-the-art methods for object tracking perform adaptive tracking-
by-detection, meaning that a detector predicts the position of an object and
adapts its parameters to the object’s appearance at the same time. While suit-
able for cases when the object does not disappear from the scene, these meth-
ods tend to fail on occlusions. In this work, we build on a novel approach
called Tracking-Learning-Detection (TLD) that overcomes this problem. In
methods based on TLD, a detector is trained with examples found on the
trajectory of a tracker that itself does not depend on the object detector. By
decoupling object tracking and object detection we achieve high robustness
and outperform existing adaptive tracking-by-detection methods. We show
that by using simple features for object detection and by employing a cas-
caded approach a considerable reduction of computing time is achieved. We
evaluate our approach both on existing standard single-camera datasets as
well as on newly recorded sequences in multi-camera scenarios.

1 Introduction

The visual cortex of the human brain locates and identifies objects by analysing the
information arriving as action potentials that are triggered in the retina [20]. While
perceptual psychologists study how the human visual system interprets environ-
mental stimuli, researchers in computer vision develop mathematical techniques
in order to extract information about physical objects based on camera images [44].
Computer vision methods are applied to optical character recognition, quality in-
spection, robot guidance, scene reconstruction and object categorisation [47]. One
domain of research in computer vision is object tracking, in which methods are
studied that estimate the location of targets in consecutive video frames [34]. The
proliferation of high-powered computers, the availability of high quality and inex-
pensive video cameras, and the need for automated video analysis have drawn in-
terest to applying object tracking algorithms in automated surveillance, automatic

1

Figure 1: The state of an object encoded in a bounding box. The enlarged patch
constrained by the bounding box is displayed on the right. The image is part of the
PETS 20091dataset.

annotation of video data, human-computer interaction, traffic monitoring and ve-
hicle navigation [50].

1.1 Problem Definition

In this work we focus on semi-automated single-target tracking. The problem of
single-target tracking is defined as follows [34]. Given a sequence of images
I1 . . . In, estimate the state xk of the target for each frame Ik. Object tracking meth-
ods encode the state xk as centroids, bounding boxes, bounding ellipses, chains of
points or shape [34]. For example, in Fig. 1, a bounding box is shown around an
object of interest. In this case, the parameters of xk consist of the upper left corner
of the rectangle (x,y) and its width and height. Maggio and Cavallaro [34] group
approaches based on the amount of user interaction that is required to identify the
objects of interest. Manual tracking requires the interaction with the user in every
frame. Automated tracking methods use a priori information in order to initialise
the tracking process automatically. In semi-automated tracking, user input is re-
quired in order to initialise the tracking process.

According to Maggio and Cavallaro [34], the main challenge in object tracking
is clutter. Clutter is the phenomenon when features expected from the object of
interest are difficult to discriminate against features extracted from other objects in
the scene. In Fig. 2 an example for clutter is shown. In this image, several objects
are present that are similar in shape to the object of interest. Another challenge is
introduced by appearance variations of the target itself. Intrinsic appearance vari-
ability include pose variation and shape deformation, whereas extrinsic appearance
variability include illumination change, camera motion and different camera view-
points [41]. Approaches that maintain a template of the object of interest typically
face the template update problem that relates to the question of how to update an
existing template so that it remains a representative model [35]. If the original tem-

2

Figure 2: The main challenge in object tracking is to the distinguish the object of
interest (green) from clutter in the background (red). Image is from [10].

plate is never changed, it will eventually no longer be an accurate representation
of the model. When the template is adapted to every change in appearance, errors
will accumulate and the template will steadily drift away from the object. This
problem is closely related to the stability-plasticity dilemma, which relates to the
trade-off between the stability required to retain information and the plasticity re-
quired for new learning [22]. This dilemma is faced by all learning systems [1].
Objects undergo occlusions when covered by other object or when they leave the
field of view of the camera. In order to handle such cases, a mechanism is neces-
sary that re-detects the object independently of its last position in the image [50].
Requirements on the execution time pose another difficulty. [50].

1.2 Related Work

Lepetit et al. [30] identify two paradigms in object tracking. Recursive tracking

methods estimate the current state xt of an object by applying a transformation
on the previous state xt−1 based on measurements z1 . . .zt taken in the respective
images. The recursive estimation of a state depends on the state of the object in
the previous frame and is susceptible to error accumulation [30]. For instance,
Lucas and Kanade [33] propose a method for estimating sparse optic flow within a
window around a pixel. The optic flow is fit into a transformation model that is used
to predict the new position of the object. In our work, we use the method of Lucas
and Kanade for tracking the object of interest in consecutive frames. Comaniciu
et al. [15] propose a tracker based on mean shift. The transformation of the object
state is obtained by finding the maximum of a similarity function based on color
histograms. In contrast, Tracking-by-detection methods estimate the object state
solely by measurements taken in the current image. This principle remedies the
effect of error accumulation. However, the object detectors have to be trained
beforehand. Özuysal et al. [38] generate synthetic views of an object by applying
affine warping techniques to a single template and train an object detector on the

1Performance Evaluation for Tracking and Surveillance: http://www.cvg.rdg.ac.uk/
PETS2009/

3

http://www.cvg.rdg.ac.uk/PETS2009/
http://www.cvg.rdg.ac.uk/PETS2009/

warped images. The object detector is based on pairwise pixel comparison and is
implemented efficiently. Object detection is then performed in every frame in order
to track the object. We use an online variant of this method as a part of an object
detection cascade.

In-between these paradigms, adaptive tracking-by-detection methods have
been developed that update an object detector online. Avidan [4] integrates a sup-
port vector machine classifier into an optic-flow-based tracker. Instead of minimiz-
ing an intensity difference function between successive frames, he maximises the
classifier score. The support vector machine is trained beforehand and unable to
adapt. Collins et al. [14] were the first to treat tracking as a binary classification
problem, the two classes being the object of interest and background. They em-
ploy automatic feature selection in order to switch to the most discriminative color
space from a set of different color spaces. They employ self-learning in order to
acquire new training examples. In self-learning, a supervised method is retrained
using its own predictions as additional labeled points. This setting is prone to
drift [12]. Javed et al. [25] employ co-training in order to label incoming data and
use it to improve a detector trained in an offline manner. It has been argued that
in object tracking the underlying assumption of co-training that two conditionally
independent views of the same data are available is violated, since in object track-
ing training examples are sampled from the same modality [27]. Ross et al. [41]
incrementally learn a low-dimensional subspace representation and adapt this rep-
resentation to changes in the appearance of the target. Adam et al. [2] propose an
approach called FragTrack that uses a static part-based appearance model based on
integral histograms. Avidan [5] uses self-learning for boosting in order to update
an ensemble classifier. Grabner et al. [21] employs a semi-supervised approach
and enforces a strong prior on the first patch, while treating the incoming images
as unlabeled data. However, if the prior is too strong, then the object is likely not
to be found again. If it is too weak, then it does not discriminate against clutter.
Babenko et al. [6] applies Multiple Instance Learning (MIL) to object tracking. In
multiple instance learning, overlapping examples of the target are put into a labeled
bag and passed on to the learner, which is therefore allowed more flexibility in find-
ing a decision boundary. Stalder et al. [46] split the tasks of detection, recognition
and tracking into three separate classifiers and achieve robustness to occlusions.
Santner et al. [42] propose PROST, a cascade of a non-adaptive template model,
an optical-flow-based tracker and an online random forest. The random forest is
updated only if its ouput overlaps with the output of one of the two other trackers.
Hare et al. [23] generalize from the binary classification problem to structured out-
put prediction. In their method called Struck they directly estimate the expected
state transformations instead of predicting class labels.

Kalal et al. [27] propose a method called TLD (Tracking-Learning-Detection)
that uses patches found on the trajectory of an optic-flow-based tracker in order to
train an object detector. Updates are performed only if the discovered patch is
similar to the initial patch. What separates this method from the adaptive tracking-
by-detection methods is that the output of the object detector itself is used only to

4

reinitialize the optic-flow-based tracker in case of failure but is never used in order
to update the classifier itself. Kalal et al. achieve superior results as well as higher
frame rates compared to adaptive tracking-by-detection methods.

1.3 Scope of Work

In this work, we follow the Tracking-Learning-Detection approach of Kalal et
al. [27]. We extend their object detection cascade and use different features in
order to reduce execution time. This document encompasses all the details that
are necessary to fully implement our approach. We implement our approach2 in
C++ and evaluate it both on existing and newly recorded test data. We give a
performance comparison to existing methods and analyse whether our approach is
suitable for multi-camera scenarios.

We use the approach of Kalal et al. [28] for tracking that is based on estimating
optical flow using the method of Lucas and Kanade [33]. This is a recursive tracker
that does not require a priori knowledge about the object. For object detection, we
follow [26] and maintain templates that are normalised in brightness and size. We
keep separate templates for positive examples of the object and for negative exam-
ples found in the background. These templates form the basis of an object detector
that is run independently of the tracker. New templates are acquired using P/N-
learning as proposed in [27]. If the detector finds a location in an image exhibiting
a high similarity to the templates, the tracker is re-initialised on this location. Since
the comparison of templates is computationally expensive, we employ a cascaded
approach to object detection. In [27] a random fern classifier [38] based on 2-bit-
binary patterns and a fixed single template is used. Our object detection cascade
consists of a foreground detector, a variance filter, a random fern classifier based on
features proposed in [31] and the template matching method. In contrast to Kalal
et al., we do not employ image warping for learning. Fig. 3 depicts the workflow
of our approach. The initialisation leads to a learning step. Next, the recursive
tracker and the detector are run in parallel and their results are fused into a single
final result. If this result passes a validation stage, learning is performed. Then the
process repeats.

This work is organised as follows. In Chapter 2, the tracking method based on
the estimation of optical flow is described. In Chapter 3, the cascaded approach to
object detection is explained. Chapter 4 deals with the question of how to fuse the
results of the tracker and describes what happens during the learning step. Chap-
ter 5 shows experimental results on test data. We also give a comparison to other
tracking methods. Chapter 6 gives a conclusion and final remarks.

1.4 Summary

In this chapter we introduced the field of object tracking and gave a problem def-
inition. We then explained that tracking is made a non-trivial task by clutter, ap-

2The code is available at http://gnebehay.github.com/OpenTLD

5

http://gnebehay.github.com/OpenTLD

Tracking Detection

Fusion

Validation

LearningInitialisation

Figure 3: The tracking process is initialised by manually selecting the object of
interest. It requires no further user interaction.

pearance variations of the target and the template update problem. We then gave a
description of related work and explained that existing approaches use elements of
recursive tracking and tracking-by-detection. We explained that Kalal et al. pro-
pose a novel approach that integrates a tracker and a detector and that we base our
approach on this method.

2 Tracking

In this chapter we describe a recursive method for object tracking. In this method,
no a priori information is required about the object except its location in the previ-
ous frame, which means that an external initialisation is required. In our approach,
the initialisation is accomplished by manual intervention in the first frame and by
the results of an object detection mechanism in consecutive frames.

We use the approach of Kalal et al. [28] for recursive tracking. We explain this
method according to Fig. 4. First, an equally spaced set of points is constructed in
the bounding box in frame t, which is shown in the left image. The optical flow is
now estimated for each of these points using the method of Lucas and Kanade [33].
This method works most reliably if the point is located on corners [45] and is
unable to track points on homogenous regions. We use information from the Lucas-
Kanade method as well as two different error measures based on normalised cross
correlation and forward-backward error in order to filter out tracked points that are
likely to be erroneous. In the right image the remaining points are shown. If the

6

median of all forward-backward error measures is above a certain threshold, we
stop recursive tracking entirely, since we interpret this event as an indication for
drift. Finally, the remaining points are used in order to estimate the position of the
new bounding box in the second frame. We use a transformation model based on
changes in translation and scale. In the right image, the bounding box from the
previous frame was transformed according to the displacement vectors from the
remaining points.

Figure 4: The principle of the recursive tracking method consists of tracking points
using an estimation of the optical flow, retaining only correctly tracked points and
estimating the transformation of the bounding box. Images are from [28].

This chapter is organised as follows. Sec. 2.1 describes the Lucas-Kanade
for estimating optical flow. In Sec. 2.2 the error measures are introduced. In
Sec. 2.3 the transformation model that we use is described and an algorithm is
given. Sec. 2.4 concludes this chapter with a summary.

2.1 Estimation of Optical Flow

Lucas and Kanade base their approach on three assumptions. The first assumption
is referred to as brightness constancy [8] and is expressed as

I(X) = J(X +d).

This assumption says that a pixel at the two-dimensional location (X) in an image
I might change its location in the second image J but retains its brightness value.
In the following, the vector d will be referred to as the displacement vector. The
second assumption is referred to [8] as temporal persistence. It states that the dis-
placement vector is small. Small in this case means that J(X) can be approximated
by

J(X)≈ I(X)+ I′(X)d,

where I′(X) is the gradient of I at location X . An estimate for d is then

d ≈
J(X)− I(X)

I′(X)
.

For any given pixel, this equation is underdetermined and the solution space is a
line instead of a point. The third assumption, known as spatial coherence, allevi-
ates this problem. It states that all the pixels within a window around a pixel move

7

coherently. By incorporating this assumption, d is found by minimizing the term

∑
(x,y)∈W

(J(X)− I(X)− I′(X)d)2
,

which is the least-squares minimisation of the stacked equations. The size of W

defines the considered area around each pixel. In [48] it is shown that the closed-
form solution to this equation is

Gd = e, (1)

where

G = ∑
X∈W

I′(X)I′(X)⊤ = ∑
X∈W

(

I2
x (X) Ixy(X)

Ixy(X) I2
y (X)

)

and
e = ∑

(x,y)∈W

(I(X)− J(X))I′(X).

Additional implementational details are in [8].

2.2 Error Measures

In order to increase the robustness of the recursive tracker, we use three criteria in
order to filter points that were tracked unreliably. The first criterion is established
directly from Eq. 1. It can be seen from this equation that d can be calculated only
if G is invertible. G is reliably invertible if it has two large eigenvalues (λ1,λ2),
which is the case when there are gradients in two directions [8]. We use formula

min(λ1,λ2)> λ

of Shi and Tomasi [45] as a first criterion for reliable tracking of points.
Kalal et al. [28] propose the forward-backward error measure. This error

measure is conceptually illustrated in Fig. 5. In the left image, the point 1 is tracked
correctly to its corresponding position in the right image. The point 2, however,
ends up at a wrong location as an occlusion occurs. The proposed error measure is
based on the idea that the tracking of points must be reversible. Point 1 is tracked
back to its original location. In contrast, point 2 is tracked back to a different
location. The proposed error measure is defined as the Euclidean distance

ε = |p− p′′|,

where p′′ is
p′′ = LK(LK(p)),

meaning that the Lucas-Kanade method is applied twice on p.
In [28] the forward-backward error measure is used in conjunction with another

measure based on the similarity of the patch surrounding p and the patch surround-
ing the tracking result p′. The similarity of these two patches P1 and P2 is compared

8

Figure 5: The idea of the forward-backward error measure lies in the observa-
tion that certain points cannot be re-tracked to their original location. Images are
from [28].

using the Normalised Correlation Coefficient (NCC) of two image patches P1 and
P2 that is defined as

NCC(P1,P2) =
1

n−1

n

∑
x=1

(P1(x)−µ1)(P2(x)−µ2)

σ1σ2
,

where µ1,µ2,σ1 and σ2 are the means and standard deviations of P1 and P2. The
normalised correlation coefficient is invariant against uniform brightness varia-
tions [32].

2.3 Transformation Model

Following the approach of Kalal et al. [28], we calculate the median of all forward-
backward errors medFB and the median medNCC of all similarity measures and
keep only those points exhibiting a forward-backward error less than medFB and
a similarity measure larger than medNCC. Furthermore, if medFB is larger than a
predefined threshold θFB, we do not give any results as we interpret this case as
an unreliable tracking result. The remaining points are used to calculate the trans-
formation of the bounding box. For this, the pairwise distances between all points
are calculated before and after tracking and the relative increase is interpreted as
the change in scale. The translation in x-direction is computed using the median of
the horizontal translations of all points. The translation in y-direction is calculated
analogously. An algorithmic version of the proposed tracker is given in Alg. 1. We
use a grid of size 10×10, a window size W = 10 and a threshold θFB = 10 for all
of our experiments.

2.4 Summary

In this chapter we described the method that we employ for recursive estimation of
an object of interest. No a priori information about the object is required except its
position in the previous frame. We explained that the transformation of the bound-
ing box of the previous frame is estimated by calculating a sparse approximation
to the optic-flow field and explain the method of Lucas-Kanade that we use for
this estimation in detail. We introduced two error measures in order to improve

9

Algorithm 1 Recursive Tracking
Input: BI, I,J

p1 . . . pn← generatePoints(BI)
for all pi do

p′i← LK(pi)
p′′i ← LK(p′i)
εi← |pi− p′′i |
ηi← NCC(W (pi),W (p′i))

end for

medNCC←median(η1 . . .ηn)
medFB←median(ε1 . . .εn)
if medFB > θFB then

BJ = /0
else

C←{(pi, p′i) | p′i 6= /0,εi ≤ medFB,ηi ≥ medncc}
BJ ← transform(BI,C)

end if

Figure 6: Recursive tracking is possible as long as the selected object is visi-
ble in the image. In the third frame an occlusion occurs. Images are from the
SPEVI3dataset.

results and to act as a stopping criterion. In Fig. 6 an example result of this track-
ing method is shown. In the left-most image, the initial bounding box is depicted
in blue. In the second image, it is shown that the selected object was tracked cor-
rectly. By employing the stopping criterion, the method is able to identify when
an occlusion takes place, as it is shown in the third image. However, in the fourth
image the method is unable to re-initialise itself as it lacks a mechanism for object
detection.

3 Detection

In this chapter we discuss the method that we employ for object detection. Ob-
ject detection enables us to re-initialise the recursive tracker that itself does not
maintain an object model and is therefore unable to recover from failure. While

3Surveillance Performance EValuation Initiative: http://www.eecs.qmul.ac.uk/

~andrea/spevi.html

10

http://www.eecs.qmul.ac.uk/~andrea/spevi.html
http://www.eecs.qmul.ac.uk/~andrea/spevi.html

the recursive tracker depends on the location of the object in the previous frame,
the object detection mechanism presented here employs an exhaustive search in
order to find the object. Since several thousands of subwindows are evaluated for
each input image, most of the time of our complete approach is spent for object
detection.

Our object detector is based on a sliding-window approach [49, 16], which is
illustrated in Fig. 7. In this figure, the image at the top is presented to the object
detector, which then evaluates a classification function at certain predefined sub-
windows within each input image. Depending on the size of the initial object, we
typically employ 50,000 to 200,000 subwindows for an image of VGA (640×480)
resolution. Each subwindow is tested independently whether it contains the object
of interest. Only if a subwindow is accepted by one stage in the cascade, the next
stage is evaluated. The four stages that we use for image classification are shown
below the input image. Cascaded object detectors aim at removing as many non-
relevant subwindows with a minimal amount of computation [43]. First, we use a
background subtraction method in order to restrict the search space to foreground
regions only. This stage requires a background model and is skipped if it is not
available. In the second stage all subwindows are rejected that exhibit a variance
lower than a certain threshold. The third stage comprises an ensemble classifier
based on random ferns [38]. The fourth stage consists of a template matching
method that is based on the normalised correlation coefficient as a similarity mea-
sure. We handle overlapping positive subwindows by employing a non-maximal
suppression strategy.

This chapter is organised as follow. In Sec. 3.1 the sliding-window approach
is described in detail. Sec. 3.2 shows how a background model restricts the search
space to foreground regions. In Sec. 3.3 the variance filter is described. Sec. 3.4
comprises a description of the ensemble classifier that is able rapidly identify pos-
itive subwindows. The template matching method is described in Sec. 3.5. In
Sec. 3.6 it is shown how overlapping detections are combined into a single result.
In Sec 3.7 a summary of this chapter is given.

3.1 Sliding-Window Approach

In sliding-window-based approaches for object detection, subimages of an input
image are tested whether they contain the object of interest [29]. Potentially, ev-
ery possible subwindow in an input image might contain the object of interest.
However, in a VGA image there are already 23,507,020,800 possible subwindows
and the number of possible subwindows grows as n4 for images of size n×n (see
App. A.1 for a proof), we restrict the search space to a subspace R by employ-
ing the following constraints. We assume that the object of interest retains its
aspect ratio. Furthermore, we introduce margins dx and dy between two adjacent
subwindows and set dx and dy to be 1

10 of the values of the original bounding
box. In order to employ the search on multiple scales, we use a scaling factor
s = 1.2a,a ∈ {−10 . . .10} for the original bounding box of the object of interest.

11

Foreground
Detection

Variance Filter

Ensemble
Classifier

Template
Matching

accept

reject

accept

reject

accept

reject

accept

reject

Figure 7: In sliding-window-based approaches for object detection, subwindows
are tested independently. We employ a cascaded approach in order to reduce com-
puting time. The input image is from the SPEVI dataset.

12

We also consider subwindows with a minimum area of 25 pixels only. The size of
the set of all subwindows R constrained in this manner is then

|R|= ∑
s∈1.2{−10...10}

⌊

n− s(w+dx)

sdx

⌋⌊

m− s(h+dx)

sdy

⌋

,

where w and h denote the size of the initial bounding box and n and m the width
and height of the image. A derivation for this formula is given in App. A.1. For
an initial bounding box of size w = 80 and h = 60 the number of subwindows
in a VGA image is 146,190. Since each subwindow is tested independently, we
employ as many threads as cores are available on the system in order to test the
subwindows.

3.2 Foreground Detection

One approach in order to identify moving objects in a video stream is background
subtraction, where each video frame is compared against a background model [13].
In this section, we describe how a background model speeds up the detection pro-
cess. The problem of establishing a background model itself is non-trivial and out
of scope for this work, for a survey see [39]. We perform background subtraction
in four steps, as it is depicted in Fig. 8. In this figure, the right upper image is the
background image Ibg and the top left image is the image I in which object detec-
tion is to be performed. We start by calculating the absolute difference of Ibg and
I

IabsDi f f = |Ibg− I|.

The result of this operation is shown in the first image of the second row. We
now apply a thresholding of 16 pixels to IabsDi f f in order to create a binary image
Ibinary, which is shown in the second image of the second row.

Ibinary(x,y) =

{

1 if IabsDi f f (x,y)> 16

0 otherwise

In the following, we will refer to connected white pixels as components. In order
to calculate the area and the smallest bounding box the blob fits into, we now
apply the labeling algorithm proposed in [11]. This algorithm calculates labels in
a single pass over the image. The idea of this algorithm is shown in Fig. 9. Starting
from the top row, each line is scanned from left to right. As soon as a white pixel
A is encountered that is not yet labeled, a unique label is assigned to A and all
the points lying on the contour of the component are assigned the same label as
A. This contour is considered an external contour. This case is shown in the first
image. If a pixel A′ on an external contour is encountered that is already labeled,
all white pixels to the right are assigned the same label until another contour is
encountered. If this is an external contour it is already labeled and the labeling
algorithm proceeds. In the second image, this corresponds to to all the lines above

13

Figure 8: The process of background subtraction. From top left to bottom right:
The input image, the background image, the result of the subtraction, the image
after thresholding, after the removal of small components, the minimal bounding
box around the foreground.

14

Figure 9: Labeling algorithm. Image is from [11].

point B. If it is not yet labeled, as it is the case for the contour on which B lies, then
it considered an internal contour and all of its pixels are assigned the same label
as B. This case is shown in the third image. If a labeled internal contour point B′

is encountered, all subsequent white pixels are assigned the same label as A. This
case is shown in the fourth image. The smallest bounding box the component fits
into is determined by the coordinates of the outermost pixels of the component.
The area of the component is the sum of all white pixels in a component.

Going back to Fig. 8, we now remove all components from the binary image
with an area less than the size of the originally selected bounding box. The result
of this operation is shown in the first image in the third row. All subwindows
are rejected that are not fully contained inside one of the smallest bounding boxes
around the remaining components. We call this set of bounding boxes C. If no
background image is available, then all subwindows are accepted.

3.3 Variance Filter

The variance of an image patch is a measure for uniformity. In Fig. 10 two sample
subwindows are shown, marked in red, that are evaluated in uniform background
regions. Both of these subwindows contain patches that exhibit a variance lower
than the patch of the object selected for tracking, which is contained in the right
green rectangle. In this section we describe a mechanism that calculates the vari-
ance of a patch in a subwindow using integral images and that rejects patches ex-
hibiting a variance lower than a threshold σ2

min. Such a variance filter is able to
rapidly reject uniform background regions but unable to distinguish between dif-
ferent well-structured objects. For instance, the left green bounding box in Fig. 10
will be accepted as well.

We use an efficient mechanism in order to compute the variance that is shown
in [49]. In order to simplify the following explanation, image patches defined
by the bounding box B are considered as a one-dimensional vector of pixels and
its elements are addressed using the notation xi for the ith pixel. For images, the
variance σ2 is defined as

σ2 =
1

n

n

∑
i=1

(xi−µ)2
, (2)

15

Low Variance

High Variance

Figure 10: Uniform background regions are identified by setting a variance thresh-
old.

16

where n is the number of pixels in the image and µ is

µ =
1

n

n

∑
i=1

xi. (3)

An alternative representation of this formula is

σ2 =
1

n

n

∑
i=1

x2
i −µ2

. (4)

the derivation for this formula is given in App. A.2.
In order to calculate σ2 using Eq. 4 for an image patch of size n, n memory

lookups are needed. By taking advantage of the fact that two overlapping image
patches partially share the same pixel values, we will now show a way to calculate
σ2 for an image patch that uses only 8 memory lookups after transforming the
input image I into two integral images. An integral image I′ is of the same size
as I and contains at location (x,y) the sum of all pixel values between the points
(1,1) and (x,y). This can be formulated as

I′(x,y) = ∑
x′≤x,y′≤y

I(x′,y′). (5)

An integral image is computable in a single pass over the image by using the fact
that I′(x,y) can be decomposed into

I′(x,y) = I(x,y)+ I′(x−1,y)+ I′(x,y−1)− I′(x−1,y−1),

where I′(x,y) = 0 for x = 0 or y = 0. By using the integral image representation,
the computation of the sum of pixels up to a specific point no longer depends on
the number of pixels in the patch. In Fig. 11, the summed pixel values within
the rectangle ABCD is obtainable the following way. First, the sum of all pixels
between (0,0) and the point D is computed. Next, the pixels in the area between
(0,0) and B are subtracted as well as the pixels in the area between and (0,0)
and C. The area between (0,0) and A must be added again, since it is subtracted
twice. Using this observation, a formula for computing the sum of pixels within a
bounding box B consisting of the parameters (x,y,w,h) is given by

n

∑
i=1

xi = I′(x−1,y−1)− I′(x+w,y−1)− I′(x−1,y+h)+ I′(x+h,y+w).

and use the notation
n

∑
i=1

xi = I′(B). (6)

as a shorthand. We use Eq. 6 in order to calculate µ in Eq. 4. In order to calculate
also the first term of the right-hand side of this equation using integral images, we
modify Eq. 5 to use the squared value of I(x,y). We get

I′′(x,y) = ∑
x′≤x,y′≤y

I(x′,y′)2
. (7)

17

A B

C D

Figure 11: The sum of the pixel values within the rectangle ABCD is calculable
by summing up the pixels up to D, subtracting the pixels up to both B and C and
adding the pixels up to A. The computation is achieved using four look-ups when
done on integral images.

In analogy to Eq. 6 we write
n

∑
i=1

x2
i = I′′(B). (8)

By combining Eq. 3, Eq. 4, Eq. 6 and Eq. 8, we get

σ2 =
1

n
I′′(B)−

[

1

n
I′(B)

]2

. (9)

This formula allows for a calculation of σ2 by using eight memory lookups. In A.3
the maximum resolution for integral images and typical data types are given. For
σ2

min, we use half of the variance value found in the initial patch.

3.4 Ensemble Classifier

In the third stage of the detection cascade we employ an ensemble classification
method presented in [38] that is known as random fern classification. This clas-
sifier bases its decision on the comparison of the intensity values of several pixels.
For each tested subwindow, a probability Ppos is calculated. If this probability is
smaller than 0.5 the subwindow is rejected. This method of classification is slower
than the variance filter, but still is very fast compared to classification methods
using SIFT features, as it was experimentally evaluated in [38].

We use features that are proposed in [31]. Fig. 12 depicts the process of feature
calculation. In this figure, a sample image to be classified is shown. In each of the
four boxes below this image, a black and a white dot are shown. Each of these dots
refers to a pixel in the original image. The positions of these dots are drawn out of
a uniform distribution once at startup and remain constant. For each of these boxes
it is now tested whether in the original image the pixel at the position of the white
dot is brighter than the pixel at the position of the black dot. Mathematically, we

18

1 1 0 1

F = 13 Training Data

P(y = 1 | F) = 0.9

Figure 12: Feature Calculation for a single fern. The intensity values of the ith
pixel pair determine the ith bit of the feature value. This feature value is then used
to retrieve the posterior probability P(y = 1 | Fk).

19

express this as

fi =

{

0 if I(di,1)< I(di,2)

1 otherwise,

where di,1 and di,2 are the two random locations. Note that this comparison is
invariant against constant brightness variations. The result of each of these com-
parisons is now interpreted as a binary digit and all of these values are concatenated
into a binary number. In Fig. 12 the resulting binary number is 1101. When written
in decimal form, this translates to 13, as it is shown in the box below the binary
digit. The ith feature determines the value of the ith bit of a number. In Alg. 2, an
algorithmic variant of this calculation is shown, in which I is the input image, F is
the calculated feature value and S is the number of features to be used. The value
of S influences the maximum feature value, which is 2S−1. A feature group of size
S, such as the one shown in Fig. 12 is referred to as a fern in [38]. The obtained
feature value is used to retrieve the probability P(y = 1 | F), where y = 1 refers
to the event that the subwindow has a positive class label. These probabilities are
determined by an online learning method that will be discussed in Chap. 4.

Algorithm 2 Efficient Fern Feature Calculation
Input: I

Output: F
F ← 0
for i = 1 . . .S do

F ← 2×F

if I(di,1)< I(di,2) then

F ← F +1
end if

end for

With only one fern, it is necessary to use a large number of features to achieve
satisfactory results [38]. However, the amount of training data needed to estimate
the P(y = 1 | Fk) increases with each additional feature. This problem is known as
curse of dimensionality [36]. Amit and Geman [3] encounter the same problem
when using randomised decision trees for character recognition and alleviate it by
not using one large tree, but several smaller trees. They then average their output.
This finding was adopted in [38] and leads to the classifier depicted in Fig. 13.
Below the image to be classified, there are three ferns, each consisting of a different
set of feature positions and each yielding a different value for P(y = 1 | Fk). In the
bottom rectangle, the average of these values Ppos is shown. Ppos is expressed as

Ppos =
1

M

M

∑
k=1

P(y = 1 | Fk),

where M refers to the number of ferns used. M and S are evaluated empirically in
Sec. 5.3.

20

P(y = 1 | F1) = 0.9 P(y = 1 | F2) = 0.5 P(y = 1 | F3) = 1.0

Ppos = 0.8

Figure 13: Ensemble classification using three random ferns. The posteriors P(y =
1 | Fk) of each individual fern are averaged to produce a final confidence value Ppos.

21

3.5 Template Matching

In the fourth stage of the detector cascade we employ a template matching method.
This stage is even more restrictive than the ensemble classification method de-
scribed in the previous section, since the comparison is performed on a pixel-by-
pixel level. We resize all patches to 15×15 pixels. For comparing two patches P1

and P2, we employ the Normalised Correlation Coefficient (NCC)

ncc(P1,P2) =
1

n−1

n

∑
x=1

(P1(x)−µ1)(P2(x)−µ2)

σ1σ2
,

where µ1,µ2,σ1 and σ2 are the means and standard deviations of P1 and P2. This
distance measure is also known as the Pearson coefficient [40]. When interpreted
geometrically, it denotes the cosine of the angle between the two normalised vec-
tors [10]. NCC yields values between −1 and 1, with values closer to 1 when the
two patches are similar. We use the following formula in order to define a distance
between two patches that yields values between 0 and 1.

d(P1,P2) = 1−
1

2
(ncc(P1,P2)+1).

We maintain templates for both the positive and negative class. We refer to the
positive class as P+ and to the negative class as P−. The templates are learned
online, as it will be described in Sec. 4.2. In Fig. 14 positive and negative examples
are shown that were learned on the sequence Multi Face Turning (see Sec. 5.4 for
a description). Given an image patch P that is of unknown class label, we calculate
both the distances to the positive class

d+ = min
Pi∈P+

d(P0,Pi)

and the distance to the negative class

d− = min
Pj∈P−

d(P0,Pj).

In Fig. 15, the green dots correspond to positive instances and red dots correspond
to negative instances. The black dot labeled with a question mark corresponds to
a patch with unknown class label. The distance to the nearest positive instance is
d+ = 0.1 and the distance to the nearest negative instance is d− = 0.4. We fuse
these distances into a single value using the formula

p+ =
d−

d−+d+

that expresses the confidence whether the patch belongs to the positive class. A
subwindow is accepted if p+ is greater than a threshold θ+. A confidence value
above this threshold indicates that the patch belongs to the positive class. We use
a value of θ+ = 0.65 for all of our experiments. In Fig. 16, p+ is shown for
all possible values. As it can be seen from this figure, p+ is 1 if d+ is 0. This
corresponds to the event that an exact positive match has been found. If d− is 0,
then p+ is 0. In the example depicted in Fig. 16, p+ is 0.8.

22

(a) Positive Examples (b) Negative Examples

Figure 14: Positive and negative patches acquired for the template matching
method during a run on a sequence from the SPEVI dataset.

d+ = 0.1

d− = 0.4

?

Figure 15: An unknown patch, labeled with a question mark, and the distance d+

to the positive class and the distance d− to the negative class. The distance is based
on the normalised correlation coefficient. The actual space in which the distance
measurement takes place has 15×15 dimensions.

23

 0

 0.5

 1

 0

 0.5

 1

 0

 0.5

 1

d
-

d
+

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 16: The confidence for a patch being positive depends on the distance to the
closest positive d+ and on the distance to the closest negative patch d−.

Figure 17: Overlapping subwindows with high confidence (yellow) are averaged
and form a single result (green). The underlying image is from [41].

3.6 Non-maximal Suppression

So far, the components of the detector cascade were introduced. Each subwindow
is assigned a value p+ that expresses the degree of belief whether it contains the ob-
ject of interest. According to Blaschko [7], an object detection mechanism ideally
identifies positive subwindows with a confidence value of 1 and negative subwin-
dows with a confidence of 0, but in practice the output consists of hills and valleys
characterizing intermediate belief in the fitness of a given location. In Fig. 17 this
situation is illustrated. In this figure, several detections with high confidence occur
around the true detection marked in green. Blaschko also states that considering
only the subwindow yielding the highest confidence is problematic because this
leads to other local maxima being ignored. Instead it is desirable to employ non-

maximal suppression strategies that identify relevant local maxima.

24

B1

B2

I

Figure 18: We define an overlap measure between two bounding boxes B1 and
B2 to be the area of their conjunction I divided by the area of their disjunction
B1 +B2− I.

For non-maximal suppression, we use the method described in [49] that clus-
ters detections based on their spatial overlap. For each cluster, all bounding boxes
are then averaged and compressed into a single detection. The confidence value
p+ of this single bounding box is then the maximum value confidence value in the
corresponding cluster. In Fig. 18, B1 is the area of the first bounding box, B2 the
area of the second bounding box and I is the area of the intersection of the two
bounding boxes. For measuring the overlap between two bounding boxes, we use
the formula from the PASCAL challenge [18]

overlap =
B1∩B2

B1∪B2
=

I

(B1 +B2− I)
. (10)

This measure is bounded between 0 and 1. We now use the hierarchical clustering

algorithm described in [37] that works as follows. First we calculate the pairwise
overlap between all confident bounding boxes. We then start at one bounding box
and look for the nearest bounding box. If this distance is lower than a certain
cutoff threshold, we put them into the same cluster and furthermore, if one of the
bounding already was in a cluster, we merge these clusters. If the overlap is larger
than the cutoff threshold, we put them into different clusters. We then proceed to
the next bounding box. We use a cutoff of 0.5 for all of our experiments.

3.7 Summary

In this chapter, we described how we run a cascade object detector on a subset of all
possible subwindows in an input image. The components of the detection cascade
were described and it was shown how overlapping positive bounding boxes are
grouped into a single detection by employing non-maximal suppression. We ex-
plained that the foreground detector and the variance filter are able to rapidly reject
subwindows, but require a preprocessing step. The ensemble classifier is compu-
tationally more expensive but provides a more granular decision mechanism. The
final decision is obtained by comparing each subwindow to normalised templates.
In Table 1 it is shown for each component how many memory lookups are neces-
sary in order to test a subwindow.

25

Method Memory Lookups

Foreground Detection |C|
Variance Filter 8

Ensemble Classifier 2 ·M ·S
Template Matching 255 · |P+| · |P−|

Table 1: Comparison of necessary memory lookups for testing a subwindow. The
variance filter and the ensemble Classifier operate at constant time (M and S are
constant values). The foreground detection depends on the number of detected
foreground regions |C|. The template matching method depends on the learned
number of templates.

In Alg. 3 an algorithm for implementing the detection cascade is given. In
Line 1 the set Dt that contains confident detection is initialised. In Lines 2-4 the re-
quired preprocessing for the foreground detection and the variance filter is shown.
Lines 5-16 contain the actual cascade. In Line 11 the subwindow is added to the
set of confident detections if it has passed all stages of the cascade. In Line 17 the
non-maximal suppression method is applied.

Algorithm 3 Detection Cascade
1: Dt ← /0
2: F ← foreground(I);
3: I′← integralImage(I);
4: I′′← integralImage(I2);
5: for all B ∈R do

6: if isInside(B,F); then

7: if calcVariance(I′(B), I′′(B))> σ2
min then

8: if classifyPatch(I(B))> 0.5 then

9: P← resize(I(B),15,15)
10: if matchTemplate(I(B))> θ+ then

11: Dt ← Dt

⋃

B

12: end if

13: end if

14: end if

15: end if

16: end for

17: Dt ← cluster(Dt)

26

4 Learning

When processing an image, both the recursive tracker and the object detector are
run in parallel. In this chapter we deal with the question of how to combine the
output of both methods into a single final result. We then show what happens
during the learning step and when it is performed.

The background model and the threshold for the variance filter are not adapted
during processing, while the ensemble classifier and the template matching method
are trained online. We address the template update problem by defining certain
criteria that have to be met in order to consider a final result suitable for performing
a learning step. In learning, we enforce two P/N-learning constraints [27]. The
first constraint requires that all patches in the vicinity of the final result must be
classified positively by the object detector. The second constraint requires that all
other patches must be classified negatively by the object detector.

This remainder of this chapter is organised as follows. In Sec. 4.1 it is shown
how the results of the recursive tracker and the object detector are combined. Fur-
thermore, the criteria for validity are given. In Sec. 4.2 it is explained how the
constraints are implemented. In Sec. 4.3 the main loop of our approach is given.
Sec. 4.4 concludes this chapter with a summary.

4.1 Fusion and Validity

In Alg. 4 our algorithm for fusing the result of the recursive tracker Rt and the
confident detections Dt into a final result Bt is given. The decision is based on the
number of detections, on their confidence values p+Dt

and on the confidence of the
tracking result p+Rt

. The latter is obtained by running the template matching method
on the tracking result. If the detector yields exactly one result with a confidence
higher than the result from the recursive tracker, then the response of the detector is
assigned to the final result (Line 5 and 15). This corresponds to a re-initialisation

of the recursive tracker. If the recursive tracker produced a result and is not re-
initialised by the detector, either because there is more than one detection or there
is exactly one detection that is less confident than the tracker, the result of the
recursive tracker is assigned to the final result (Line 7). In all other cases the final
result remains empty (Line 1), which suggests that the object is not visible in the
current frame.

We use the predicate valid(Bt) to express a high degree of confidence that the
final result Bt is correct. Only if the final result is valid the learning step described
in the next section is performed. As it is stated in Alg. 4 the final result is valid
under the following two circumstances, both of which assume that the tracker was
not re-initialised by the detector. The final result is valid if the recursive tracker
produced a result with a confidence value being larger than θ+ (Line 9). The
final result is also valid if the previous result was valid and the recursive tracker
produced a result with a confidence larger than θ−. (Line 11). In all other cases,
the final result is not valid. The first bounding box is always valid. As it was noted

27

already in Sec. 3.5, the threshold θ+ indicates that a result belongs to the positive
class. The threshold θ− indicates that a result belongs to the negative class and is
fixed at θ− = 0.5 for all of our experiments.

Algorithm 4 Hypothesis Fusion and Validity.
Input: Rt ,Dt

Output: Bt

1: Bt ← /0
2: valid(Bt)← false
3: if Rt 6= /0 then

4: if |Dt |= 1∧ p+Dt
> p+Rt

then

5: Bt ← Dt

6: else

7: Bt ← Rt

8: if p+Rt
> θ+ then

9: valid(Bt)← true
10: else if valid(Bt−1)∧ p+Rt

> θ− then

11: valid(Bt)← true
12: end if

13: end if

14: else if |Dt |= 1 then

15: Bt ← Dt

16: end if

4.2 P/N-Learning

According to Chapelle [12], there are two fundamentally different types of tasks
in machine learning. In supervised learning a training set is created and divided
into classes manually, essentially being a set of pairs 〈xi,yi〉. The xi correspond to
training examples and the yi to the corresponding class label. The training set is
used to infer a function f : X → Y that is then applied to unseen data. Supervised
learning methods in object detection have been successfully applied most notably
to face-detection [49] and pedestrian detection [16]. However, the learning phase
prevents applications where the object to be detected is unknown beforehand. In
the same way, the learned classifier is also unable to adapt to changes in the distri-
bution of the data. The second task in machine learning is unsupervised learning.
In this setting, no class labels are available and task is finding a partitioning of this
data, which is be achieved by density estimation, clustering, outlier detection and
dimensionality reduction [12].

Between these two paradigms there is semi-supervised learning. In semi-
supervised learning, there are labeled examples as well as unlabeled data. One type
of semi-supervised learning methods uses the information present in the training
data as supervisory information [12] in order to find a class distribution in the

28

Figure 19: P/N Constraints

unlabeled data and to update the classifier using this class separation as a training
set. In our tracking setting there is exactly one labeled example. In [27], a semi-
supervised learning method called P/N-learning is introduced. This method shows
how so-called structural constraints can extract training data from unlabeled data
for binary classification. In P/N-learning, there are two types of constraints: A
P-constraint identifies false negative outputs and adds them as positive training
examples. An N-constraint does the converse. In Fig. 19, Xu refers to the unlabeled
data available. This data is first classified by an existing classifier that assigns labels
Yu to Xu. Then, the structural constraints, according to some criterion, identify
misclassified examples Xc with new labels Yc. These examples are then added
to the training set and training is performed, which results in an update of the
classification function.

We use the following constraints for object detection that are proposed in [27].
The P-Constraint requires that all patches that are highly overlapping with the final
result must be classified as positive examples. The N-Constraint requires that all
patches that are not overlapping with the valid final result must be classified as
negative examples. We consider a bounding box B highly overlapping with Bt if it
exhibits an overlap of at least 60%. B is considered not to be overlapping with Bt

if the overlap is smaller than 20%. For measuring overlap, we employ the metric
already described in Sec. 3.6.

A complete algorithmic description of the constraints is given in Alg. 5. We
will now describe the measures that we take in order to adapt the ensemble clas-
sifier and the template matching method in order to classifiy these examples cor-
rectly. For the ensemble classifier, we have not yet explained how the posterior
values are calculated for each fern. Recall that P(y = 1 | Fk) is the probability

29

whether a patch is positive given the features Fk. We define the posterior to be

P(y = 1 | Fk) =

{ pFk

pFk
+nFk

, if pFk
+nFk

> 0

0, if pFk
+nFk

= 0.

In this formula pFk
is the number of times the P-constraint was applied to this com-

bination of features and nFk
is the number of times the N-constraints was applied.

In Line 2 we test whether a bounding box overlapping with the final result is mis-
classified by the ensemble classifier. We increment pFk

in Line 5 for each fern if the
overlap is smaller than 0.6 and the ensemble classifier yielded a confidence lower
than 0.5. In Line 10 nFk

is incremented for misclassified negative patches. When
updating the ensemble classifier, the computational overhead does not increase.
This is different for the template matching method, as every additional patch in
the set of positive or negative templates increases the number of comparisons that
must be made in order to classify a new patch. In order to change the label of
a misclassified positive patch for the template matching method, we add it to the
set of positive templates. This patch then has a distance of d+ = 0, which means
that its confidence is 1. However, as it is shown in Line 18, we do this only for
the patch contained in the final result Bt . Note that the learning step is performed
only if the final result is valid, which already implies that p+Bt

is larger than θ−. As
for the N-constraint for the template matching method, we add negative patches to
the template matching method if they were misclassified by the ensemble classifier
and also are misclassified by the template matching methods.

In Fig. 20 it is illustrated when positive templates are added. At point A, track-
ing starts with a high confidence and a valid result. Learning is performed, but no
positive examples are added, because the confidence is above θ+. The confidence
then drops below θ+ (Point B) but remains above θ−. According to Alg. 4 this
means that the final result is still valid. Exactly in this case positive patches are
added, which leads to an increased confidence. At Point C, the confidence drops
below θ−, which leads to the final result not being valid anymore. In Point D,
confidence is at the same level as in Point B, but no learning is performed since the
final result is not valid.

4.3 Main Loop

We now have described all components that are used in our approach. In Alg. 6
the main loop of our implementation is given. When the initial patch is selected,
a learning step is performed (Line 1). For each image in the sequence, the tracker
and the detector are run (Line 3 and 4), their result is fused (Line 5) and if the final
result is considered valid then the learning step is performed (Line 7). The final
result is then printed (Line 9) and the next image is processed.

30

Algorithm 5 Applying P/N-constraints
Input: I,Bt

1: for all B ∈R do

2: if overlap(B,Bt)> 0.6 and classifyPatch(I(B))< 0.5 then

3: for k = 1 . . .M do

4: F ← calcFernFeatures(I(B),k)
5: pFk

[F]← pFk
[F]+1

6: end for

7: else if overlap(B,Bt)< 0.2 and classifyPatch(I(B))> 0.5 then

8: for k = 1 . . .M do

9: F ← calcFernFeatures(I(B),k)
10: nFk

[F]← nFk
[F]+1

11: end for

12: if p+Bt
> θ− then

13: P−←P−∪ I(B)
14: end if

15: end if

16: end for

17: if p+Bt
< θ+ then

18: P+←P+∪ I(Bt)
19: end if

0

θ−

θ+

1

A

B

C

D

Frame

C
on

fi
de

nc
e

Figure 20: Positive examples are added only when the confidence value drops from
a high value (Frame A) to a value between θ+ and θ− (Frame B). In Frame D no
learning is performed, since the confidence rises from a low value in Frame C. This
measure ensures that the number of templates is kept small.

31

Algorithm 6 Main loop
Input: I1 . . . In,B1

1: learn(I1,B1)
2: for t = 2 . . .n do

3: Rt ← track(It−1, It ,Bt−1)
4: Dt ← detect(It)
5: Bt ← fuse(Rt ,Dt)
6: if valid(Bt) then

7: learn(It ,Bt)
8: end if

9: print(Bt)
10: end for

4.4 Summary

In this chapter, we described that we obtain a final result based on the results of the
recursive tracker and the object detector by basing our decision on the confidence
of the template matching method run on both results. We further defined criteria for
validity based on the confidence value and of the validity of the previous bounding
box. We perform learning only if the final result is valid. The learning step consists
of identifying falsely labeled examples and updating the ensemble classifier and the
template matching method in order to correctly classify them.

5 Results

In this chapter, our approach is evaluated empirically both on sequences that have
been used in the literature as well as on newly recorded sequences. We employ the
standard metrics recall and precision for assessing performance. For this evalua-
tion, a C++ implementation was created, where the calculation of the optical flow
(Sec. 2.1), the calculation of the normalised correlation coefficient (Seq. 3.5), all
the operations for the foreground detection (Sec. 3.2) as well as low-level image
operations are implemented as function calls to the OpenCV4 library. The multi-
threaded optimisation described in Sec. 3.1 was implemented using an OpenMP5

pragma. All experiments were conducted on an Intel Xeon dual-core processor
running at 2.4 Ghz.

This chapter is organised as follows. Sec. 5.1 explains the evaluation protocol.
In Sec. 5.2, the video sequences that are used in our experiments are described. In
Sec. 5.3, the parameters for the ensemble classifier are evaluated empirically. In
Sec. 5.4, qualitative results are shown on two video sequences. The requirement set
on the overlap when comparing to ground truth is discussed in Sec. 5.5. In Sec. 5.6

4Open Computer Vision: http://opencv.willowgarage.com
5Open Multi-Processing: http://openmp.org

32

http://opencv.willowgarage.com
http://openmp.org

quantitative results for performance and execution time are obtained for our ap-
proach and two state-of-the-art methods. In Sec. 5.7 our algorithm is evaluated in
a multi-camera scenario. Each experiment is concluded with a discussion.

5.1 Evaluation Protocol

In order to compare the output of an algorithm to ground truth values we use the
overlap measure from Eq. 10. In [24] it is shown that this measure equally penalizes
translations in both directions and scale changes. Based on the overlap between
algorithmic output and ground truth values, each frame of a sequence is categorised
as one of the five possible cases shown in Fig. 21. A result is considered true

positive if the overlap is larger than a threshold ω (Case a). A result is counted as
false negative when the algorithm yields no result for a frame even though there is
an entry in the ground truth database (Case b). The opposite case is a false positive

(Case c). If the overlap is lower than the threshold ω , then this is counted both a
false negative and a false positive (Case d). If for a frame neither an algorithmic
output nor an entry in the ground truth database exists then this case is considered
a true negative (Case e).

After processing a video sequence, all occurrences of True Positives (TP), False
Positives (FP), True Negatives (TN) and False Negatives (FN) are counted. Based
on these values we calculate two performance metrics. Recall is defined as

recall =
TP

TP+FN

and measures the fraction of positive examples that are correctly labeled [17]. Pre-
cision is defined as

precision =
TP

TP+FP
and measures the fraction of examples classified as positive that are truly posi-
tive [17]. Depending on the application, high recall or high precision (or both)
may be demanded. Since our approach uses random elements, we repeat every
experiment five times and average the values for precision and recall.

Our algorithm provides a confidence measure for each positive output it pro-
duces. By applying thresholding, results exhibiting a confidence lower than a cer-
tain value θ are suppressed. This suppression affects the performance metrics as
follows. True positives with a confidence less than θ become false negatives, mean-
ing that both recall and precision get worse. Also, false positives with a confidence
less than θ become true negatives, meaning that precision improves. Thresholding
is most effective if false positive results are produced with low confidence values
and true positive results with high confidence values. A precision-recall curve vi-
sualise how different values for θ impact precision and recall. A sample curve is
given in Fig. 22, where the right bottom end of the curve refers to the precision
and recall values when the threshold is 0, meaning that no true positives and no
false positives were removed. The rest of the curve represents recall and preci-
sion values as θ is increased, ending in a point where θ = 1. We chose not to use

33

GT

ALG

(a) True Positive

GT

(b) False Negative

ALG

(c) False Positive

GT ALG

(d) False Negative and False Positive

(e) True Negative

Figure 21: Five possible cases when comparing algorithmic results to ground truth
values. The case (e) is not considered in metrics that we use.

34

precision-recall curves because it turned out during experiments that no relevant
improvement for precision was achievable. We attribute this to the mechanism for
automatic failure detection described in Sec. 2.3 that prevents false positives.

0 0.5 1
0

0.5

1

Recall

P
re

ci
si

on

Figure 22: Sample precision-recall curve.

5.2 Sequences

In this section we describe the sequences that we use for evaluation, all of which
are accompanied by manually annotated ground truth data. Multi Face Turning

from the SPEVI6 dataset consists of four people moving in front of a static camera,
undergoing various occlusions and turning their faces right and left. The diffi-
culty in this sequence lies in the fact that four instances of the same category are
present and that all persons undergo various occlusions. The sequence consists of
1006 individual frames. The sequence PETS view 001 is taken from the PETS
20097 dataset. It shows pedestrians walking across a T junction and consists of
794 frames. The pedestrians exhibit a similar appearance due to low spatial reso-
lution. The following six sequences that are shown in Fig. 23 were used in [51, 27]
for evaluating object tracking methods. The sequence David Indoor8 consists of
761 frames and shows a person walking from an initially dark setting into a bright
room. No occlusions occur in this sequence. Jumping consists of 313 frames
and shows a person jumping rope, which causes motion blur. Pedestrian 1 (140
frames), Pedestrian 2 (338 frames) and Pedestrian 3 (184 frames) show pedestri-
ans being filmed by an unstable camera. The sequence Car consists of 945 frames
showing a moving car. This sequence is challenging because the images exhibit
low contrast and various occlusions occur.

6Surveillance Performance EValuation Initiative: http://www.eecs.qmul.ac.uk/

~andrea/spevi.html
7Performance Evaluation of Tracking and Surveillance: http://www.cvg.rdg.ac.uk/

PETS2009/a.html
8http://www.cs.toronto.edu/~dross/ivt/

35

http://www.eecs.qmul.ac.uk/~andrea/spevi.html
http://www.eecs.qmul.ac.uk/~andrea/spevi.html
http://www.cvg.rdg.ac.uk/PETS2009/a.html
http://www.cvg.rdg.ac.uk/PETS2009/a.html
http://www.cs.toronto.edu/~dross/ivt/

(a) David Indoor (b) Jumping (c) Pedestrian 1

(d) Pedestrian 2 (e) Pedestrian 3 (f) Car

Figure 23: The data set used for analysing the importance of the overlap measure
and for comparing to existing approaches.

We recorded two datasets, Multi Cam Narrow and Multi Cam Wide, each
consisting of three sequences, for the evaluation in multi-camera scenarios. The
camera positions and orientations for both datasets are shown in Fig. 24. In Multi

Cam Narrow the cameras were placed next to each other, each camera looking in
the same direction. For Multi Cam Wide each camera was placed in a corner of
the room, facing to its center. In Fig. 25 a frame from each camera in Multi Cam

Wide is shown recorded at the same instant of time. In Fig. 26 a frame from each
sequence in Multi Cam Wide is shown as well as enlarged views of the selected
object.

5.3 Parameter Selection for Ensemble Classifier

In this experiment we analyse the effects of varying the parameters for the ensem-
ble classifier on the sequence Multi Face Turning. The two parameters in question
are the number of features in a group (S) and the total number of groups (M).
In [38] it was concluded that setting S = 10 and M = 10 gives good recognition
rates. Since we do not employ random ferns as a final classification step but as
part of a detector cascade and furthermore use on online learning approach, we re-
evaluate these parameters. Breiman [9] shows that randomized decision trees do
not overfit as the number of trees is increased but produce a limiting value of the
generalization error. This means that increasing M does not decrease recall.

Since S is the number of features that are assumed to be correlated, for large
values of S the curse of dimensionality arises, meaning that the amount of training
data increases with S. On the other hand, low values of S ignore correlation in the

36

3 1 2

(a) Multi Cam Narrow

3

12

(b) Multi Cam Wide

Figure 24: Camera setup for Multi Cam Narrow.

Figure 25: Sample frames from Multi Cam Narrow.

37

Figure 26: Sample frames of Multi Cam Wide and an enlarged view of the selected
object.

data [38]. Another aspect for choosing S is the amount of memory required. For
S = 24, at least 16,777,216 entries for the posterior values have to be stored for
every fern. For this experiment, we set M = 50 and let S vary from 1 to 24. In
Fig. 27, S is plotted against the achieved recall. The recall first increases linearly
with S and reaches its maximum at S = 13. For higher values of S, less recall is
achieved.

Since the time spent on testing each sliding window depends linearly on M,
this means that M should be small when low execution time is desired. Fig. 28
shows how the recall is affected by M. For this experiment, we set S = 13. The
results show that recall increases up to M = 30 and does not change afterwards.

Discussion

This experiment shows that the parameters of the ensemble classifier influence
recall. We get best results for S = 13 and M > 30. The observations here are in
line with the finding in [9] that randomised decision trees do not overfit as more
trees are added. For the rest of the experiments in this chapter, we set S = 13 and
M = 10, as a compromise between recall, speed and memory consumption.

38

0 10 20
0

0.5

1

S

R
ec

al
l

Multi Face Turning

Figure 27: Varying the size S of the feature groups when M = 50.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

M

R
ec

al
l

Multi Face Turning

Figure 28: Varying the number of ferns M when S = 13.

39

5.4 Qualitative Results

In this section, qualitative results for the sequences Multi Face Turning and PETS

view 001 are given. In all of the presented images, a blue bounding box denotes a
result with its confidence being larger than 0.5, all other bounding boxes are drawn
in yellow. We show results for Multi Face Turning in Fig. 29. In the top left image,
the face initially selected for tracking is shown. The person then moves to the right
and gets occluded by another person. The recursive tracker correctly stops tracking
and the face is detected as it appears to the right of the occluding person. This is
shown in the top right image. The selected face then turns left and right several
times and undergoes another occlusion, which is again handled correctly, as it is
depicted in the first image in the second row. The selected person then leaves the
camera view on the right and enters on the same side in the back of the room. At
first, the head of the person is rotated but as soon as a position frontal to the camera
is assumed a detection occurs, as it is shown in the second image in the second row.
In the first image in the third row the recursive tracker does not stop tracking even
though an occlusion occurred, however no learning is performed since the distance
to the model remains below 0.5, as indicated by the yellow bounding box. The
detector then yields a detection with a higher confidence than the recursive tracker,
as it is depicted in the second image in the third row. The person then leaves the
field of view on the left-hand side and enters at a position close to the camera (see
first image in the fourth row), appearing twice as large as in the first frame. The
face is detected and tracked correctly until the last appearance of the selected face,
depicted in the second image in the fourth row.

Results for PETS view 001 are shown in Fig. 30. The person shown in the
top-left image is selected for tracking. The person walks to the left and gets almost
fully occluded several times by the pole in the middle of the image. Additional
occlusions occur when walking behind two other people. The tracker stops and the
detector correctly re-initialises the target as soon as it reappears, which is shown in
the second image in the first row. The person then returns to the right-hand side of
the image and leaves the field of view while being tracked correctly, as it is depicted
in the first image of the second row. In the second image of the second row a false
detection occurs. The original target then appears on the right-hand side of the
field of view and causes another detection, as it is shown in the first image of the
third row. The person then walks to the left and gets occluded by another person,
as depicted in the second image in the third row. Both persons walk in opposite
directions, which causes the recursive tracker to erroneously remain at the current
position for the following 297 frames with a confidence lower than 0.5. The target
person in the meantime walks around the scene without being re-detected. Finally,
a correct detection occurs in the last image presented and the person is tracked
correctly until the end of the sequence.

40

Figure 29: Qualitative results for the sequence Multi Face Turning.

41

Figure 30: Qualitative results for the sequence PETS view 001.

42

Discussion

The experiments discussed in this section demonstrate that our method is able to
learn the appearance of objects online and to re-detect the objects of interest after
occlusions, even at different scales. On Multi Face Turning, the face is re-detected
after every but one occlusion. In both the first and the second experiment there are
frames where the object of interest is not detected even though it is visible. In Multi

Face Turning this is due to the face appearing in a pose that never appeared before,
which is a situation that our method cannot handle. In the second experiment,
the object of interest is not detected even it appears in poses similar to the ones
encountered in learning steps. The problem here is that during learning, the other
persons walking around the scenes are (correctly) recognised as negative examples.
However, since the appearance of these persons is similar to the appearance of the
object of interest, a close positive match is needed in order to achieve a detection.
In Multi Face Turning the faces exhibit sufficiently dissimilarity.

5.5 Requirement on Overlap

As it was pointed out in Sec. 5.1, the categorisation of algorithmic output depends
on the parameter ω that defines the required overlap between an algorithmic result
and ground truth values. When ω is increased, both recall and precision decrease.
Depending on the intended application, different requirements on accurate results
are desired. In this section we analyse empirically to what extent precision and
recall change when varying ω . For this experiment, we use three different values
for ω (0.25, 0.5 and 0.75) and evaluate precision and recall on the sequences David

Indoor, Jumping, Pedestrian 1-3 and Car. The resulting values for precision and
recall that are obtained when running our implementation with the three different
values for ω are shown in Table 2.

omega = 0.75 omega = 0.5 omega = 0.25

David Indoor 0.08/0.08 0.65/0.65 0.66/0.66
Jumping 0.13/0.14 0.63/0.63 1.00 1.00

Pedestrian 1 0.00/0.00 0.04/0.04 1.00 1.00
Pedestrian 2 0.06/0.11 0.55/1.00 0.56/1.00
Pedestrian 3 0.22/0.35 0.32/0.51 0.32/0.51

Car 0.08/0.09 0.95/0.94 0.95/0.94

Table 2: Performance metrics improve when the requirement on the overlap ω is
relaxed. The first value in a cell denotes recall, the second value is precision.

Discussion

In the conducted experiment, for all sequences there is a drastic increase in both
recall and precision when the requirement of an exact match is relaxed. This is

43

most visible for the sequence Pedestrian 1, where the recall increases from 0 (ω =
0.75) over 0.04 (ω = 0.5) to 1 (ω = 0.25). We attribute this to two causes. First,
the process of manually annotating video data is ambiguous [6]. The algorithmic
output therefore might not completely overlap with the ground truth data. Another
source for inaccuracies is the recursive tracker, since small errors accumulate and
let the tracker drift away from the original target until it is re-initialised. The effect
on performance is reduced by setting a low requirement on overlap. An overlap
requirement of ω = 0.25 is sufficient for our intended applications and we perform
the rest of the experiments with this setting.

5.6 Comparison to State-of-the-Art Methods

In this section our approach is evaluated quantitatively with respect to precision,
recall and execution time. We compare our approach to two other tracking ap-
proaches. TLD is proposed in [27] and Struck is proposed in [23]. Both ap-
proaches are briefly described in Sec. 1.2. An implementation for Struck was ob-
tained from the respective project website9. The results for TLD were taken directly
from [27]. The parameters of Struck were left at their default values. For this eval-
uation the dataset from the previous section is used, which also used in [51] for a
comparison of tracking systems. In Table 3, the values for recall and precision are
shown. The first value in each table cell is the recall, the second value is precision.
The maximum recall values for a sequence are emphasised.

Ours TLD [27] Struck [23]

David Indoor 0.66/0.66 0.94/0.94 0.23/0.23
Jumping 1.00/1.00 0.86/0.77 1.00/1.00

Pedestrian 1 1.00/1.00 0.22/0.16 0.84/0.84
Pedestrian 2 0.56/1.00 1.00/0.95 0.26/0.21
Pedestrian 3 0.32/0.51 1.00/0.94 0.67/0.57

Car 0.95/0.94 0.93/0.83 0.88/0.80

Table 3: Comparative performance metrics. The first value in a cell denotes recall,
the second is precision. Best recall values for a sequence are emphasised.

We also present a comparison of the time needed for execution for the selected
algorithms. For this evaluation, each algorithm was run 5 times on the sequence
Jumping and the average was calculated. The results are presented in Table 4. In
the second column the average time in seconds needed to process the sequence as a
whole is given. In the third column, the number of frames in the sequence divided
by the processing time is given.

9http://www.samhare.net/research/struck

44

http://www.samhare.net/research/struck

Method Time (s) Frames / s

Ours (multi-threaded) 14.12 22.04
Ours (single-threaded) 18.39 17.02

TLD 38.17 8.20
Struck 809.57 0.38

Table 4: Speed comparison on Jumping.

Discussion

Our algorithm achieves the highest recall on three out of six sequences and ties
on one sequence with Struck. The highest recall for the three other sequences is
achieved by TLD. We explain the different results for the original implementa-
tion of TLD and our implementation with the different features that are used for
the ensemble classifier. Struck yields good results as well but performs worse on
sequences with occlusions. Our multi-threaded implementation takes least com-
puting time. It is almost three times as fast as the original TLD. This is caused by
the use of random ferns over 2-bit-binary patterns, the addition of a variance filter
in the detection cascade and the implementation in C++. Compared to Struck, our
implementation is 57 times faster.

5.7 Evaluation on Multiple Cameras

For evaluating the applicability in multi-camera scenarios we use the sequences
Multi Cam Narrow and Multi Cam Wide. First, we select an initial bounding box
in the first frame the object appears in the sequence. For Multi Cam Narrow, we
select the left-most face on all sequences. For Multi Cam Wide we select the face of
the person initially to the right. We then let our algorithm run without intervention
for the rest of the sequence. When processing is done, we export all the data that
was learned, which are the variance of the initial patch, the posterior values of the
ensemble classifier P(y= 1 |Fk) and the positive and negative patches of the nearest
neighbor classifier P+ and P−. We call this combination of data the model of
the object. We now apply the extracted model without any manual initialisation to
all sequences in the data set, including the one it was generated with. The obtained
recall values for Multi Cam Narrow are in Table 5. The diagonal values show
results where a model was applied in a camera where it was learned initially. The
minimum recall value for all results is 0.45, which was achieved when the model
from camera 3 was applied in camera 2. In all sequences, false detections occur, but
are recovered from. The model recorded in camera 2 scores best in all sequences.
The results for Multi Cam Wide are in Table 6. Ignoring the diagonal values, 2 out
of 6 model-camera combinations achieved a recall larger than 0. The best recall
value 0.54 was obtained when running the model from camera 3 in camera 1. In
all cases where recall is 0, the object is not detected over the course of the image

45

sequence.

Model learned in

Cam 1 Cam 2 Cam 3

Model applied to
Cam 1 0.60 0.79 0.69
Cam 2 0.78 0.80 0.45
Cam 3 0.85 0.87 0.84

Table 5: Recall for Multi Cam Narrow.

Model learned in

Cam 1 Cam 2 Cam 3

Model applied to
Cam 1 0.78 0.00 0.54
Cam 2 0.16 0.66 0.00
Cam 3 0.00 0.00 0.44

Table 6: Recall for Multi Cam Wide.

Discussion

The experiments described in this section give insight about the applicability in
scenarios with multiple cameras. It can be seen from the results for dataset Multi

Cam Narrow that in principle it is possible to learn an object in one camera and ap-
ply it in a second camera. However, as the baseline between the cameras increases,
results get worse. The second image column of Fig. 26 depicts the difficulties
present in Multi Cam Narrow. In this column, the selected face is shown as it
appears in the three different cameras. Due to varying lighting conditions the ap-
pearance of an object in one camera is distorted significantly compared to the two
other cameras. One could alleviate this problem by employing dedicated lighting
equipment in order to create homogenous lighting settings in all three cameras, but
there are application scenarios where this is not feasible, for instance when images
are taken from a surveillance camera.

6 Conclusion

In this work we presented an implementation of a novel approach to robust object
tracking based on the Tracking-Learning-Detection paradigm. We were able to
reproduce the results of Kalal et al. and showed that the use of features based on
pairwise pixel comparison and two additional stages in the detection cascade lead
to a reduced computing time and do not degrade results. In our implementation,

46

we reduce computing time by a factor of three. Applying our approach to multi-
camera scenarios is feasible as long as the lighting conditions and the orientations
of the cameras are similar. For a GPU implementation, we expect a reduction of
computing time by a factor of 4.

In sequences containing occlusions, approaches based on Tracking-Learning-
Detection outperform adaptive tracking-by-detection methods. We attribute this to
the following reasons. Adaptive tracking-by-detection methods typically perform
a form of self-learning, meaning that the output of a classifier is used for labeling
unlabeled data. In Tracking-Learning-Detection, unlabeled data is explored by a
tracking mechanism that is not dependent on the detector but bases its decision
on a different measure, which in our case is the optical flow. The performance
of approaches based on Tracking-Learning-Detection is further improved by the
automatic detection of tracking failures and by introducing criteria for validity that
have to be met when learning is performed.

Clearly, our approach heavily depends on the quality of the results delivered
by the recursive tracker. Principally, the quality of the results can be improved in
two ways. First, the timespan during which the tracker is following the object of
interest correctly could be increased. This would present the object detector with
more true positive examples. Second, The automatic detection of tracking failures
could be improved, which would further prevent the object detector from drifting.

One problem that was encountered during the experiments is that the object
detector is unable to discriminate against objects that exhibit a similar appearance.
This problem is partially caused by the fact that the comparison of templates is
performed on images of reduced size. One solution to this problem might be to
increase the resolution of the template images, but this will introduce the curse
of dimensionality. As a compromise, one could employ image pyramids for the
templates and perform the comparison using a coarse-to-fine strategy.

The use of bounding boxes, while convenient for implementation, also has its
shortcomings. Since bounding boxes always cover a rectangular region around
the object, they partially may contain background. We assign class labels on a
bounding-box level which causes the appearance of the background to be consid-
ered part of the object of interest. This leads to the problem that the object of
interest is not recognised when it appears on a different background. In order to
separate the object of interest from the background in a bounding box for learning,
one could use segmentation techniques, such as the one presented in [19].

Currently, our approach gives information about the location of the object of
interest only, but not about its orientation. Information about the orientation of
objects could be retrieved by employing an affine transformation model for the
Lucas-Kanade tracker.

A severe unsolved problem consists of the fact that the detector is unable to
recognise appearance changes that occur while the tracker is not active. In [38],
image warping is applied to training examples in order to achieve invariance to
affine transformations. However, affine transformations do not cover changes in
local illumination or perspective. These changes occur frequently in multi-camera

47

scenarios and are caused by different lighting conditions and camera viewpoints.
A solution for this problem yet has to be found.

Acknowledgement

The research leading to these results has received funding from the European Union
Seventh Framework Programme under grant agreement no 257906.

48

A Appendix

A.1 Number of Subwindows in an Image

Generally, in an image of size n×m, the exhaustive set Rexh of all possible sub-
windows is

Rexh = {〈x,y,w,h〉 | 1≤ x < n,1≤ y < m,1≤ w≤ n− x,1≤ h≤ m− y} .

The size of this set is

|Rexh|=
n

∑
x=1

(n− x)
m

∑
y=1

(m− y)

=
n

∑
x=1

(n− x)

(

m2−
m

∑
y=1

y

)

=
n

∑
x=1

(n− x)

(

m2−
m(m+1)

2

)

=
n

∑
x=1

(n− x)
m(m−1)

2

=
n(n−1)

2

m(m−1)

2
.

For an image of size n×n, the size is

|Rexh|=
n(n−1)

2

n(n−1)

2

=
n4−2n3 +n2

4
.

If the constraints from Sec. 3.1 are used, the number of possible subwindows
decreases as follows. Let w,h be the width and height of the initial window and let
dx,dy be the pixels that each subwindow is to be shifted. The number of subwin-
dows in one row then is

nx =

⌊

n−w+dx

dx

⌋

and the number of subwindows in one column is

ny =

⌊

m−h+dy

dy

⌋

.

The total number of sliding windows then is

|R|= nxny.

49

A.2 Alternative Formulation of Variance

The alternative formulation of the variance is obtained by the following deriva-
tion10.

σ2 =
1

n

n

∑
i=1

(xi−µ)2

=
1

n

n

∑
i=1

x2
i −2xiµ +µ2

=
1

n

n

∑
i=1

x2
i −

1

n

n

∑
i=1

2xiµ +
1

n

n

∑
i=1

µ2

=
1

n

n

∑
i=1

x2
i −2µ

1

n

n

∑
i=1

xi +µ2

=
1

n

n

∑
i=1

x2
i −2µ2 +µ2

=
1

n

n

∑
i=1

x2
i −µ2

.

A.3 Maximum Resolution for Integral Images

When pixel values in an image I of size n×m are stored in unsigned integers
of a bits, the maximal value at the integral image I′(n,m) is I′max = 2amn. This
means that ⌈a+ log2(mn)⌉ is the number of bits needed to hold I′max. For instance,
if the resolution of I is 640× 480 and pixel information is stored using an 8-bit
integer, then for the values in I′ 8+ log2(640 ·480) = 27 bits have to be used. The
maximal number of pixels for 32-bit integers therefore is 232−a, which corresponds
to a resolution of 4730× 3547. For a value in squared integral images I′′ ⌈2a+
log2(nm)⌉ bits are necessary.

10Note that in [49] the alternative formulation of the variance is incorrectly stated as σ2 = µ2−
1
n ∑

n
i=1 x2

i .

50

References

[1] W. C. Abraham and A. Robins. Memory retention–the synaptic stability ver-
sus plasticity dilemma. Trends in neurosciences, 28(2):73–78, Feb. 2005. 3

[2] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking us-
ing the integral histogram. In 2006 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition - Volume 1 (CVPR’06), volume 1,
pages 798–805. IEEE, July 2006. 4

[3] Y. Amit and D. Geman. Shape quantization and recognition with randomized
trees. Neural Computation, 9(7):1545–1588, Oct. 1997. 20

[4] S. Avidan. Support vector tracking. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(8):1064–1072, 2004. 4

[5] S. Avidan. Ensemble tracking. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 29(2):261–271, Feb. 2007. 4

[6] B. Babenko, Ming-Hsuan Yang, and S. Belongie. Visual tracking with on-
line multiple instance learning. In 2009 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition Workshops (CVPR Workshops),
pages 983–990. IEEE, June 2009. 4, 44

[7] M. B. Blaschko. Branch and Bound Strategies for Non-maximal Suppression

in Object Detection, volume 6819 of Lecture Notes in Computer Science,
chapter 28, pages 385–398. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011. 24

[8] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the

OpenCV Library. O’Reilly Media, 1st edition, Oct. 2008. 7, 8

[9] L. Breiman. Random forests. Machine Learning, 45(1):5–32, Oct. 2001. 36,
38

[10] R. Brunelli. Template Matching Techniques in Computer Vision: Theory and

Practice. Wiley Publishing, 2009. 3, 22

[11] F. Chang. A linear-time component-labeling algorithm using contour tracing
technique. Computer Vision and Image Understanding, 93(2):206–220, Feb.
2004. 13, 15

[12] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning.
The MIT Press, Sept. 2006. 4, 28

[13] S.-C. S. Cheung and C. Kamath. Robust techniques for background subtrac-
tion in urban traffic video. In S. Panchanathan and B. Vasudev, editors, Visual

Communications and Image Processing 2004 (Proceedings Volume), volume
5308, pages 881–892. SPIE, 2004. 13

51

[14] R. T. Collins, Y. Liu, and M. Leordeanu. Online selection of discriminative
tracking features. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 27(10):1631–1643, 2005. 4

[15] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid ob-
jects using mean shift. In Computer Vision and Pattern Recognition, 2000.

Proceedings. IEEE Conference on, volume 2, pages 142–149 vol.2. IEEE,
2000. 3

[16] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In Proceedings of the 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05) - Volume 1 - Volume 01, volume 1
of CVPR ’05, pages 886–893, Washington, DC, USA, June 2005. IEEE Com-
puter Society. 11, 28

[17] J. Davis and M. Goadrich. The relationship between Precision-Recall and
ROC curves. In Proceedings of the 23rd international conference on Machine

learning, ICML ’06, pages 233–240, New York, NY, USA, 2006. ACM. 33

[18] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes (VOC) challenge. International Journal of Com-

puter Vision, 88(2):303–338, June 2010. 25

[19] M. Godec, P. M. Roth, and H. Bischof. Hough-based tracking of non-rigid
objects. In Computer Vision (ICCV), 2011 IEEE International Conference

on, pages 81–88. IEEE, Nov. 2011. 47

[20] E. B. Goldstein. Sensation and Perception. Wadsworth Publishing, 8 edition,
Feb. 2009. 1

[21] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised On-Line boost-
ing for robust tracking. In D. Forsyth, P. Torr, and A. Zisserman, editors,
Proceedings of the 10th European Conference on Computer Vision, volume
5302, pages 234–247, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
4

[22] S. Grossberg. Competitive learning: From interactive activation to adaptive
resonance. Cognitive Science, 11(1):23–63, Jan. 1987. 3

[23] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking with
kernels. In Computer Vision (ICCV), 2011 IEEE International Conference

on, pages 263–270. IEEE, Nov. 2011. 4, 44

[24] B. Hemery, H. Laurent, and C. Rosenberger. Comparative study of metrics for
evaluation of object localisation by bounding boxes. In Image and Graphics,

2007. ICIG 2007. Fourth International Conference on, pages 459–464. IEEE,
Aug. 2007. 33

52

[25] O. Javed, S. Ali, and Mubarak Shah. Online detection and classification
of moving objects using progressively improving detectors. In 2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’05), volume 1, pages 696–701. IEEE, 2005. 4

[26] Z. Kalal, J. Matas, and K. Mikolajczyk. Online learning of robust object de-
tectors during unstable tracking. In Proceedings of the IEEE On-line Learn-

ing for Computer Vision Workshop, pages 1417–1424, 2009. 5

[27] Z. Kalal, J. Matas, and K. Mikolajczyk. P-N learning: Bootstrapping binary
classifiers by structural constraints. In 2010 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 49–56. IEEE, June 2010. 4,
5, 27, 29, 35, 44

[28] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-Backward Error: Automatic
Detection of Tracking Failures. 2010. 5, 6, 7, 8, 9

[29] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond sliding windows:
Object localization by efficient subwindow search. In Computer Vision and

Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8,
2008. 11

[30] V. Lepetit and P. Fua. Monocular model-based 3D tracking of rigid objects.
Found. Trends. Comput. Graph. Vis., 1(1):1–89, 2005. 3

[31] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for Real-Time keypoint
recognition. Computer Vision and Pattern Recognition, IEEE Computer So-

ciety Conference on, 2:775–781, 2005. 5, 18

[32] J. P. Lewis. Fast normalized cross-correlation. In Vision Interface, pages
120–123. Canadian Image Processing and Pattern Recognition Society, 1995.
9

[33] B. D. Lucas and T. Kanade. An iterative image registration technique with
an application to stereo vision. In Proceedings of the International Joint

Conference on Artificial Intelligence, pages 674–679, 1981. 3, 5, 6

[34] E. Maggio and A. Cavallaro. Video Tracking: Theory and Practice. Wiley,
2011. 1, 2

[35] L. Matthews, T. Ishikawa, and S. Baker. The template update problem. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, 26(6):810–
815, 2004. 2

[36] T. M. Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math,
1 edition, Mar. 1997. 20

[37] F. Murtagh. A survey of recent advances in hierarchical clustering algorithms.
The Computer Journal, 26(4):354–359, Nov. 1983. 25

53

[38] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten lines of
code. In 2007 IEEE Conference on Computer Vision and Pattern Recognition,
volume 0, pages 1–8, Los Alamitos, CA, USA, June 2007. IEEE. 3, 5, 11,
18, 20, 36, 38, 47

[39] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam. Image change detection
algorithms: a systematic survey. Image Processing, IEEE Transactions on,
14(3):294–307, Mar. 2005. 13

[40] J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at the correlation
coefficient. The American Statistician, 42(1):59–66, 1988. 22

[41] D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for robust
visual tracking. International Journal of Computer Vision, 77(1):125–141,
May 2008. 2, 4, 24

[42] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof. PROST: Parallel
robust online simple tracking. In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pages 723–730. IEEE, June 2010. 4

[43] H. Schneiderman. Feature-centric evaluation for efficient cascaded object
detection. In Computer Vision and Pattern Recognition, 2004. CVPR 2004.

Proceedings of the 2004 IEEE Computer Society Conference on, volume 2,
pages II–29–II–36 Vol.2. IEEE, June 2004. 11

[44] L. G. Shapiro and G. C. Stockman. Computer Vision. Prentice Hall, Jan.
2001. 1

[45] J. Shi and C. Tomasi. Good features to track. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR’94), Seattle, June 1994. 6, 8

[46] S. Stalder, H. Grabner, and L. van Gool. Beyond semi-supervised tracking:
Tracking should be as simple as detection, but not simpler than recognition.
In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th Interna-

tional Conference on, pages 1409–1416. IEEE, 2009. 4

[47] R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.
1

[48] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical
Report CMU-CS-91-132, Carnegie Mellon University, Apr. 1991. 8

[49] P. Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features. In 2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. CVPR 2001, volume 1, pages I–511–I–518,
Los Alamitos, CA, USA, Apr. 2001. IEEE Comput. Soc. 11, 15, 25, 28, 50

[50] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Com-

puting Surveys, 38(4):13+, Dec. 2006. 2, 3

54

[51] Q. Yu, T. B. Dinh, and G. Medioni. Online tracking and reacquisition using
co-trained generative and discriminative trackers. In European Conference on

Computer Vision, volume 5303 of Lecture Notes in Computer Science, pages
678–691, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. 35, 44

55

VERSIONSNUMMER

Kontakt

AIT Austrian Institute of Technology GmbH
Donau-City-Straße 1, 1220 Wien, Austria

www.ait.ac.at

Fax +43 (0) 50550-2201

DI. Helmut Leopold
Bereichsleiter

+43 (0) 50550-4101
helmut.leopold@ait.ac.at

Mag. Michael Mürling

Marketing
+43 (0) 50550-4126

michael.muerling@ait.ac.at

Silvia Böhler
Sekretariat

+43 (0) 50550-4120
silvia.boehler@ait.ac.at

